Electrical conductivity measurement of λ DNA molecules by conductive atomic force microscopy
Name:
9-Electrical+conductivity+meas ...
Size:
468.3Kb
Format:
PDF
Description:
author's accepted version
Authors
Wang, YingXie, Ying
Gao, Mingyan
Zhang, Wenxiao
Liu, Lanjiao
Qu, Yingmin
Wang, Jiajia
Hu, Cuihua
Song, Zhengxun
Wang, Zuobin
Issue Date
2021-11-08Subjects
conductive atomic force microscopy (C-AFM)DNA molecule
nanoelectronics
nano measurement
Subject Categories::J990 Technologies not elsewhere classified
Metadata
Show full item recordAbstract
Conductive atomic force microscopy (C-AFM) is a powerful tool used in the microelectronics analysis by applying a certain bias voltage between the conducting probe and the sample and obtaining the electrical information of sample. In this work, the surface morphological information and current images of the lambda DNA (λ DNA) molecules with different distributions were obtained by C-AFM. The 1 and 10 ng μl−1 DNA solutions were dripped onto mica sheets for making randomly distributed DNA and DNA network samples, and another 1 ng μl−1 DNA sample was placed in a DC electric field with a voltage of 2 V before being dried for stretching the DNA sample. The results show that the current flowing through DNA networks was significantly higher than the stretched and random distribution of DNA in the experiment. The I–V curve of DNA networks was obtained by changing the bias voltage of C-AFM from −9 to 9 V. The currents flowing through stretched DNA at different pH values were studied. When the pH was 7, the current was the smallest, and the current was gradually increased as the solution became acidic or alkaline.Citation
Wang Y, Xie Y, Gao M, Zhang W, Liu L, Qu Y, Wang J, Hu C, Song Z, Wang Z (2021) 'Electrical conductivity measurement of λ DNA molecules by conductive atomic force microscopy', Nanotechnology, 33 (5), 055301.Publisher
IOP PublishingJournal
NanotechnologyAdditional Links
https://iopscience.iop.org/article/10.1088/1361-6528/ac0be6Type
ArticleLanguage
enISSN
0957-4484EISSN
1361-6528ae974a485f413a2113503eed53cd6c53
10.1088/1361-6528/ac0be6
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Green - can archive pre-print and post-print or publisher's version/PDF