Design optimization of resource allocation in OFDMA-based cognitive radio-enabled Internet of Vehicles (IoVs)
Affiliation
University of BedfordshireIssue Date
2020-11-09Subjects
cognitive radiogame theory
Internet of Vehicles (IoVs)
OFDMA
vehicular ad-hoc networks
Subject Categories::G420 Networks and Communications
Metadata
Show full item recordAbstract
Joint optimal subcarrier and transmit power allocation with QoS guarantee for enhanced packet transmission over Cognitive Radio (CR)-Internet of Vehicles (IoVs) is a challenge. This open issue is considered in this paper. A novel SNBS-based wireless radio resource scheduling scheme in OFDMA CR-IoV network systems is proposed. This novel scheduler is termed the SNBS OFDMA-based overlay CR-Assisted Vehicular NETwork (SNO-CRAVNET) scheduling scheme. It is proposed for efficient joint transmit power and subcarrier allocation for dynamic spectral resource access in cellular OFDMA-based overlay CRAVNs in clusters. The objectives of the optimization model applied in this study include (1) maximization of the overall system throughput of the CR-IoV system, (2) avoiding harmful interference of transmissions of the shared channels’ licensed owners (or primary users (PUs)), (3) guaranteeing the proportional fairness and minimum data-rate requirement of each CR vehicular secondary user (CRV-SU), and (4) ensuring efficient transmit power allocation amongst CRV-SUs. Furthermore, a novel approach which uses Lambert-W function characteristics is introduced. Closed-form analytical solutions were obtained by applying time-sharing variable transformation. Finally, a low-complexity algorithm was developed. This algorithm overcame the iterative processes associated with searching for the optimal solution numerically through iterative programming methods. Theoretical analysis and simulation results demonstrated that, under similar conditions, the proposed solutions outperformed the reference scheduler schemes. In comparison to other scheduling schemes that are fairness-considerate, the SNO-CRAVNET scheme achieved a significantly higher overall average throughput gain. Similarly, the proposed time-sharing SNO-CRAVNET allocation based on the reformulated convex optimization problem is shown to be capable of achieving up to 99.987% for the average of the total theoretical capacity.Citation
Eze J, Zhang S, Liu E, Eze E (2020) 'Design optimization of resource allocation in OFDMA-based cognitive radio-enabled Internet of Vehicles (IoVs)', Sensors, 20 (21), pp.6402-.Publisher
MDPIJournal
SensorsAdditional Links
https://www.mdpi.com/1424-8220/20/21/6402Type
ArticleLanguage
enISSN
1424-8220ae974a485f413a2113503eed53cd6c53
10.3390/s20216402
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Green - can archive pre-print and post-print or publisher's version/PDF