Show simple item record

dc.contributor.authorAnyachebelu, Tochukwu Kene
dc.contributor.authorConrad, Marc
dc.contributor.authorAjmal, Tahmina
dc.date.accessioned2020-07-13T09:47:50Z
dc.date.available2020-02-15T00:00:00Z
dc.date.available2020-07-13T09:47:50Z
dc.date.issued2014-12-31
dc.identifier.citationAnyachebelu TK, Conrad M, Ajmal T (2014) 'Modeling and prediction of surface water contamination using on-line sensor data', International Journal on Smart Sensing and Intelligent Systems, 7 (5), pp.1-5.en_US
dc.identifier.issn1178-5608
dc.identifier.doi10.21307/IJSSIS-2019-117
dc.identifier.urihttp://hdl.handle.net/10547/624205
dc.description.abstractWater contamination is a great disadvantage to humans and aquatic life. Maintaining the aesthetics and quality of water bodies is a priority for environmental stake holders. The water quality sensor data can be analyzed over a period of time to give an indication of pollution incidents and could be a useful forecasting tool. Here we show our initial finding from statistical analysis on such sensor data from one of the lakes of the river Lea, south of Luton. Our initial work shows patterns which will form the basis for our forecasting model.en_US
dc.language.isoenen_US
dc.publisherExeley Inc.en_US
dc.relation.urlhttps://www.exeley.com/in_jour_smart_sensing_and_intelligent_systems/doi/10.21307/ijssis-2019-117en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectwater qualityen_US
dc.subjectsensorsen_US
dc.subjectstatisticsen_US
dc.subjectpredictionen_US
dc.subjectSubject Categories::H122 Water Quality Controlen_US
dc.titleModeling and prediction of surface water contamination using on-line sensor dataen_US
dc.typeArticleen_US
dc.identifier.eissn1178-5608
dc.identifier.journalInternational Journal on Smart Sensing and Intelligent Systemsen_US
dc.date.updated2020-07-13T09:45:13Z
dc.description.noteopen access CC BY-NC-ND 4.0


Files in this item

Thumbnail
Name:
10.21307_ijssis-2019-117.pdf
Size:
641.8Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International