Show simple item record

dc.contributor.authorHushani, Phillip
dc.date.accessioned2020-07-09T10:21:54Z
dc.date.available2020-07-09T10:21:54Z
dc.date.issued2018-09-29
dc.identifier.citationHushani P (2019) 'Using autoregressive modelling and machine learning for stock market prediction and trading', Third International Congress on Information and Communication Technology ICICT 2018 - London, Springer.en_US
dc.identifier.isbn9789811311659
dc.identifier.issn2194-5357
dc.identifier.doi10.1007/978-981-13-1165-9_70
dc.identifier.urihttp://hdl.handle.net/10547/624182
dc.description.abstractInvestors raise profit from stock market by maximising gains and minimising loses. The profit is difficult to raise because of the volatile nature of stock market prices. Predictive modelling allows investors to make informed decisions. In this paper, we compare four forecasting models: autoregressive integrated moving average (ARIMA), vector autoregression (VAR), long short-term memory (LSTM) and nonlinear autoregressive Exogenous (NARX). The results of predictive modelling are analysed and compared in terms of prediction accuracy. The research aims to develop a new profitable trading strategy. Our findings are: (i) the NARX model has provided accurate short-term predictions but failed long forecasts, and (ii) the VAR model can form a good trend line required for trading. Thus, the profitable trading strategy can combine the machine learning predictive modelling and technical analysis.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.urlhttps://link.springer.com/chapter/10.1007/978-981-13-1165-9_70en_US
dc.rightsGreen - can archive pre-print and post-print or publisher's version/PDF
dc.subjectautoregressive modellingen_US
dc.subjectstock market predictionen_US
dc.subjectmachine learningen_US
dc.titleUsing autoregressive modelling and machine learning for stock market prediction and tradingen_US
dc.title.alternativeThird International Congress on Information and Communication Technologyen_US
dc.typeConference papers, meetings and proceedingsen_US
dc.identifier.eissn2194-5365
dc.contributor.departmentUniversity of Bedfordshireen_US
dc.identifier.journalAdvances in Intelligent Systems and Computingen_US
dc.date.updated2020-07-09T10:19:24Z
dc.description.note


This item appears in the following Collection(s)

Show simple item record