Abstract
Single-cell patterning technology has revealed significant contributions of single cells to conduct basic and applied biological studies in vitro such as the understanding of basic cell functions, neuronal network formation, and drug screening. Unlike traditional population-based cell patterning approaches, single-cell patterning is an effective technology of fully understanding cell heterogeneity by precisely controlling the positions of individual cells. Therefore, much attention is currently being paid to this technology, leading to the development of various micro-nanofabrication methodologies that have been applied to locate cells at the single-cell level. In recent years, various methods have been continuously improved and innovated on the basis of existing ones, overcoming the deficiencies and promoting the progress in biomedicine. In particular, microfluidics with the advantages of high throughput, small sample volume, and the ability to combine with other technologies has a wide range of applications in single-cell analysis. Here, we present an overview of the recent advances in single-cell patterning technology, with a special focus on current physical and physicochemical methods including stencil patterning, trap- and droplet-based microfluidics, and chemical modification on surfaces via photolithography, microcontact printing, and scanning probe lithography. Meanwhile, the methods applied to biological studies and the development trends of single-cell patterning technology in biological applications are also described.Citation
Wang Z, Lang B, Qu Y, Li L, Song Z, Wang Z (2019) 'Single-cell patterning technology for biological applications', Biomicrofluidics, 13 (6), pp.061502.Publisher
AIP PublishingJournal
BiomicrofluidicsPubMed ID
31737153Additional Links
https://aip.scitation.org/doi/10.1063/1.5123518Type
ArticleLanguage
enISSN
1932-1058ae974a485f413a2113503eed53cd6c53
10.1063/1.5123518
Scopus Count
Collections
Related articles
- Surface patterning techniques for proteins on nano- and micro-systems: a modulated aspect in hierarchical structures.
- Authors: Bhatt M, Shende P
- Issue date: 2022 Feb 23
- Integration of cell culture and microfabrication technology.
- Authors: Park TH, Shuler ML
- Issue date: 2003 Mar-Apr
- Single-cell droplet microfluidics for biomedical applications.
- Authors: Liu D, Sun M, Zhang J, Hu R, Fu W, Xuanyuan T, Liu W
- Issue date: 2022 May 30
- Chemically functionalized surface patterning.
- Authors: Zhou X, Boey F, Huo F, Huang L, Zhang H
- Issue date: 2011 Aug 22
- Patterning Hydrophobic Surfaces by Negative Microcontact Printing and Its Applications.
- Authors: Wu H, Wu L, Zhou X, Liu B, Zheng B
- Issue date: 2018 Sep