Show simple item record

dc.contributor.authorSelitskaya, Natalya
dc.contributor.authorSielicki, S.
dc.contributor.authorJakaite, Livija
dc.contributor.authorSchetinin, Vitaly
dc.contributor.authorEvans, F.
dc.contributor.authorConrad, Marc
dc.contributor.authorSant, Paul
dc.date.accessioned2020-06-09T08:54:03Z
dc.date.available2020-06-09T08:54:03Z
dc.date.issued2020-06-09
dc.identifier.citationSelitskaya N, Sielicki S, Jakaite L, Schetinin V, Evans F, Conrad M, Sant P (2020) 'Deep learning for biometric face recognition: experimental study on benchmark data sets', in Jiang R, Li C, Crookes D, Meng W, Rosenberger C (ed(s).). Deep Biometrics, 1 edn, London: Springer International Publishing pp.71-97.en_US
dc.identifier.isbn9783030325824
dc.identifier.doi10.1007/978-3-030-32583-1_5
dc.identifier.urihttp://hdl.handle.net/10547/624023
dc.description.abstractThere are still problems in applications of Machine Learning for face recognition. Such factors as lighting conditions, head rotations, emotions, and view angles affect the recognition accuracy. A large number of recognition subjects requires complex class boundaries. Deep Neural Networks have provided efficient solutions, although their implementations require massive computations for evaluation and minimisation of error functions. Gradient algorithms provide iterative minimisation of the error function. A maximal performance is achieved if parameters of gradient algorithms and neural network structures are properly set. The use of pairwise neural network structures often improves the performance because such structures require a small set of optimisation parameters. The experiments have been conducted on some face biometric benchmark data sets, and the main findings are presented in the form of a tutorial.en_US
dc.language.isoenen_US
dc.publisherSpringer International Publishingen_US
dc.relation.urlhttps://link.springer.com/chapter/10.1007%2F978-3-030-32583-1_5en_US
dc.subjectbiometricsen_US
dc.subjectmachine learningen_US
dc.subjectSubject Categories::G760 Machine Learningen_US
dc.titleDeep learning for biometric face recognition: experimental study on benchmark data setsen_US
dc.title.alternativeDeep Biometricsen_US
dc.typeBook chapteren_US
dc.date.updated2020-06-09T08:43:56Z
dc.description.notefull text not require for REF and think this file not copyright compliant so passing metadata only


This item appears in the following Collection(s)

Show simple item record