Euclidean geometry axioms assisted target cell boundary approximation for improved energy efficacy in LTE systems
Affiliation
University of BedfordshireIssue Date
2017-10-23Subjects
Long Term Evolution (LTE)radio link failure (RLF)
energy saving
hysteresis
G420 Networks and Communications
Metadata
Show full item recordAbstract
Long Term Evolution (LTE) facilitates users with high data rate at the cost of increased energy consumption. The base station, also known as eNodeB, is the main energy hungry elements in LTE networks. Since power consumption directly affects the operational expenditure, thus the provision of cost-effective services with adequate quality of service has become a major challenge. This paper investigates reduced early handover (REHO) scheme aimed at increased energy efficiency in LTE systems. REHO, compared to standard LTE A3 event, initiates early handover, thereby resulting into reduced energy consumption. Axioms of Euclidean geometry are employed to estimate the target cell boundary towards calculation of the time difference ΔT between standard LTE and REHO. Performance analysis involved comparison of standard LTE with REHO in the presence of varying velocity and Hysteresis values. Early handover ΔT in REHO is calculated in terms of transmission time intervals and results into improved energy efficiency at the cost of slightly increased radio link failure (RLF). The key finding of the work is the nonsensitivity of users towards velocity in standard LTE, whereas REHO leads to considerably improved energy efficiency at low velocity thereby making it an advantageous scheme for urbanised densely deployed LTE networks. Outcomes provided also deliver a guideline for vendors to choose suitable value of hysteresis, while achieving appropriate results of energy saving and RLF.Citation
Safdar G, Kanwal K (2019) 'Euclidean geometry axioms assisted target cell boundary approximation for improved energy efficacy in LTE systems', IEEE Systems Journal, 13 (1), pp.270-278.Journal
IEEE Systems JournalAdditional Links
https://ieeexplore.ieee.org/abstract/document/8080306Type
ArticleLanguage
enISSN
1932-8184ae974a485f413a2113503eed53cd6c53
10.1109/JSYST.2017.2760357