Postural time-series analysis using Empirical Mode Decomposition and second-order difference plots
dc.contributor.author | Pachori, Ram Bilas | en |
dc.contributor.author | Hewson, David | en |
dc.contributor.author | Snoussi, Hichem | en |
dc.contributor.author | Duchêne, Jacques | en |
dc.date.accessioned | 2019-09-17T11:50:34Z | |
dc.date.available | 2019-09-17T11:50:34Z | |
dc.date.issued | 2009-05-26 | |
dc.identifier.citation | Pachori RB, Hewson D, Snoussi H, Duchene J (2009) 'Postural time-series analysis using Empirical Mode Decomposition and second-order difference plots', 2009 IEEE International Conference on Acoustics, Speech and Signal Processing - Taipei, IEEE. | en |
dc.identifier.issn | 1520-6149 | |
dc.identifier.doi | 10.1109/ICASSP.2009.4959639 | |
dc.identifier.uri | http://hdl.handle.net/10547/623470 | |
dc.description.abstract | This paper presents a new method for analysis of center of pressure (COP) signals using empirical mode decomposition (EMD). The EMD decomposes a COP signal into a finite set of band-limited signals termed as intrinsic mode functions (IMFs). Thereafter, a signal processing technique used in continuous chaotic modeling is used to investigate the difference between experimental conditions on the summed IMFs. This method is used to detect the degree of variability from a second-order difference plot, which is quantified using a Central Tendency Measure (CTM). Seventeen subjects were tested under eyes open (EO) and eyes closed (EC) conditions, with different vibration frequencies applied for the EC condition in order to provide additional sensory perturbation. This study has demonstrated an effective way to differentiate vibration frequencies by combining EMD and second-order difference (SOD) plots. | |
dc.language.iso | en | en |
dc.publisher | IEEE | en |
dc.relation.url | https://ieeexplore.ieee.org/document/4959639 | en |
dc.subject | COP signal | en |
dc.subject | time series analysis | en |
dc.title | Postural time-series analysis using Empirical Mode Decomposition and second-order difference plots | en |
dc.type | Conference papers, meetings and proceedings | en |
dc.identifier.journal | 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS | en |
dc.date.updated | 2019-09-17T10:46:53Z | |
html.description.abstract | This paper presents a new method for analysis of center of pressure (COP) signals using empirical mode decomposition (EMD). The EMD decomposes a COP signal into a finite set of band-limited signals termed as intrinsic mode functions (IMFs). Thereafter, a signal processing technique used in continuous chaotic modeling is used to investigate the difference between experimental conditions on the summed IMFs. This method is used to detect the degree of variability from a second-order difference plot, which is quantified using a Central Tendency Measure (CTM). Seventeen subjects were tested under eyes open (EO) and eyes closed (EC) conditions, with different vibration frequencies applied for the EC condition in order to provide additional sensory perturbation. This study has demonstrated an effective way to differentiate vibration frequencies by combining EMD and second-order difference (SOD) plots. |