A structured approach to malware detection and analysis in digital forensics investigation
dc.contributor.author | AlMarri, Saeed | en |
dc.date.accessioned | 2018-03-07T14:49:20Z | |
dc.date.available | 2018-03-07T14:49:20Z | |
dc.date.issued | 2017-04 | |
dc.identifier.uri | http://hdl.handle.net/10547/622529 | |
dc.description | A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirement for the degree of PhD | en |
dc.description.abstract | Within the World Wide Web (WWW), malware is considered one of the most serious threats to system security with complex system issues caused by malware and spam. Networks and systems can be accessed and compromised by various types of malware, such as viruses, worms, Trojans, botnet and rootkits, which compromise systems through coordinated attacks. Malware often uses anti-forensic techniques to avoid detection and investigation. Moreover, the results of investigating such attacks are often ineffective and can create barriers for obtaining clear evidence due to the lack of sufficient tools and the immaturity of forensics methodology. This research addressed various complexities faced by investigators in the detection and analysis of malware. In this thesis, the author identified the need for a new approach towards malware detection that focuses on a robust framework, and proposed a solution based on an extensive literature review and market research analysis. The literature review focussed on the different trials and techniques in malware detection to identify the parameters for developing a solution design, while market research was carried out to understand the precise nature of the current problem. The author termed the new approaches and development of the new framework the triple-tier centralised online real-time environment (tri-CORE) malware analysis (TCMA). The tiers come from three distinctive phases of detection and analysis where the entire research pattern is divided into three different domains. The tiers are the malware acquisition function, detection and analysis, and the database operational function. This framework design will contribute to the field of computer forensics by making the investigative process more effective and efficient. By integrating a hybrid method for malware detection, associated limitations with both static and dynamic methods are eliminated. This aids forensics experts with carrying out quick, investigatory processes to detect the behaviour of the malware and its related elements. The proposed framework will help to ensure system confidentiality, integrity, availability and accountability. The current research also focussed on a prototype (artefact) that was developed in favour of a different approach in digital forensics and malware detection methods. As such, a new Toolkit was designed and implemented, which is based on a simple architectural structure and built from open source software that can help investigators develop the skills to critically respond to current cyber incidents and analyses. | |
dc.language.iso | en | en |
dc.publisher | University of Bedfordshire | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | malware | en |
dc.subject | computer security | en |
dc.subject | digital forensics | en |
dc.title | A structured approach to malware detection and analysis in digital forensics investigation | en |
dc.type | Thesis or dissertation | en |
dc.contributor.department | University of Bedfordshire | en |
dc.type.qualificationname | PhD | en_GB |
dc.type.qualificationlevel | PhD | en |
dc.publisher.institution | University of Bedfordshire | en |
html.description.abstract | Within the World Wide Web (WWW), malware is considered one of the most serious threats to system security with complex system issues caused by malware and spam. Networks and systems can be accessed and compromised by various types of malware, such as viruses, worms, Trojans, botnet and rootkits, which compromise systems through coordinated attacks. Malware often uses anti-forensic techniques to avoid detection and investigation. Moreover, the results of investigating such attacks are often ineffective and can create barriers for obtaining clear evidence due to the lack of sufficient tools and the immaturity of forensics methodology. This research addressed various complexities faced by investigators in the detection and analysis of malware. In this thesis, the author identified the need for a new approach towards malware detection that focuses on a robust framework, and proposed a solution based on an extensive literature review and market research analysis. The literature review focussed on the different trials and techniques in malware detection to identify the parameters for developing a solution design, while market research was carried out to understand the precise nature of the current problem. The author termed the new approaches and development of the new framework the triple-tier centralised online real-time environment (tri-CORE) malware analysis (TCMA). The tiers come from three distinctive phases of detection and analysis where the entire research pattern is divided into three different domains. The tiers are the malware acquisition function, detection and analysis, and the database operational function. This framework design will contribute to the field of computer forensics by making the investigative process more effective and efficient. By integrating a hybrid method for malware detection, associated limitations with both static and dynamic methods are eliminated. This aids forensics experts with carrying out quick, investigatory processes to detect the behaviour of the malware and its related elements. The proposed framework will help to ensure system confidentiality, integrity, availability and accountability. The current research also focussed on a prototype (artefact) that was developed in favour of a different approach in digital forensics and malware detection methods. As such, a new Toolkit was designed and implemented, which is based on a simple architectural structure and built from open source software that can help investigators develop the skills to critically respond to current cyber incidents and analyses. |