Improved efficiency of microcrystalline silicon thin film solar cells with wide band-gap CdS buffer layer
Abstract
In this paper, we have reported a new structure based upon an optical simulation of maximum light trapping and management in microcrystalline silicon thin film solar cells by using multi texture schemes and introducing an n-type cadmium sulphide (CdS) buffer layer with the goal of extreme light coupling and absorption in silicon absorber layer. Photon absorption was improved by optimising the front and back texturing of transparent conductive oxide (TCO) layers and variation in buffer layer thickness. We have demonstrated that light trapping can be improved with proposed geometry of 1μm thick crystalline silicon absorber layer below a thin layer of wide band gap material. We have improved the short circuit current densities by 1.35mA/cm2 resulting in a total short circuit current of 25 mA/cm2 and conversion efficiency of 9% with the addition of CdS buffer layer and multi textures, under global AM1.5 conditions. In this study, we have used 2 Dimensional Full Vectorial Finite Element (2DFVFEM) to design and optimize the proposed light propagation in solar cell structure configuration. Our simulation results show that interface morphology of CdS layer thickness and textures with different aspect and ratios have the most prominent influence on solar cell performance in terms of both short circuit current and quantum efficiency.Citation
Jabeen M, Haxha S, Charlton M. (2017) 'Improved efficiency of microcrystalline silicon thin film solar cells with wide band-gap CdS buffer layer', IEEE Photonics Journal, 9 (6), pp.1-15.Journal
IEEE Photonics JournalAdditional Links
http://ieeexplore.ieee.org/document/8088349/Type
ArticleLanguage
enISSN
1943-0655EISSN
1943-0655ae974a485f413a2113503eed53cd6c53
10.1109/JSEN.2017.2704098
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Green - can archive pre-print and post-print or publisher's version/PDF