Baseline and triangulation geometry in a standard plenoptic camera
Abstract
In this paper, we demonstrate light field triangulation to determine depth distances and baselines in a plenoptic camera. The advancement of micro lenses and image sensors enabled plenoptic cameras to capture a scene from different viewpoints with sufficient spatial resolution. While object distances can be inferred from disparities in a stereo viewpoint pair using triangulation, this concept remains ambiguous when applied in case of plenoptic cameras. We present a geometrical light field model allowing the triangulation to be applied to a plenoptic camera in order to predict object distances or to specify baselines as desired. It is shown that distance estimates from our novel method match those of real objects placed in front of the camera. Additional benchmark tests with an optical design software further validate the model’s accuracy with deviations of less than 0:33 % for several main lens types and focus settings. A variety of applications in the automotive and robotics field can benefit from this estimation model.Citation
Hahne C., Aggoun A., Velisavljevic V., Fiebig S., Pesch M. (2017) 'Baseline and triangulation geometry in a standard plenoptic camera', International Journal of Computer Vision 126 (1) 21-35Publisher
SpringerAdditional Links
https://link.springer.com/article/10.1007/s11263-017-1036-4Type
ArticleLanguage
enISSN
0920-5691EISSN
1573-1405ae974a485f413a2113503eed53cd6c53
10.1007/s11263-017-1036-4
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Green - can archive pre-print and post-print or publisher's version/PDF


