• β-alanine supplementation enhances human skeletal muscle relaxation speed but not force production capacity

      Hannah, Ricci; Jones, Rebecca Louise; Minshull, Claire; Artioli, Guilherme Giannini; Harris, Roger C.; Sale, Craig (American Physiological Society, 2015-03-01)
      PURPOSE: β-alanine (BA) supplementation improves human exercise performance. One possible explanation for this is an enhancement of muscle contractile properties, occurring via elevated intramuscular carnosine resulting in improved calcium sensitivity and handling. This study investigated the effect of BA supplementation on in vivo contractile properties and voluntary neuromuscular performance. METHODS: Twenty-three men completed two experimental sessions, pre- and post-28 days supplementation with 6.4 g·d-1 39 of BA (n = 12) or placebo (PLA; n = 11). During each session, force was recorded during a series of knee extensor contractions: resting and potentiated twitches and octet (8 pulses, 300 Hz) contractions elicited via femoral nerve stimulation; tetanic contractions (1 s, 1 – 100 Hz) via superficial muscle stimulation; and maximum and explosive voluntary contractions. RESULTS: BA supplementation had no effect on the force-frequency relationship, or the force responses (force at 25 ms and 50 ms from onset, peak force) of resting or potentiated twitches, and octet contractions (P > 0.05). Resting and potentiated twitch electromechanical delay and time-to-peak tension were unaffected by BA supplementation (P > 0.05), although half-relaxation time declined by 7-12% (P < 0.05). Maximum and explosive voluntary forces were unchanged after BA supplementation. CONCLUSION: BA supplementation had no effect on evoked force responses, implying that altered calcium sensitivity and/or release are not the mechanisms by which BA supplementation influences exercise performance. The reduced half-relaxation time with BA supplementation might, however, be explained by enhanced reuptake of calcium, which has implications for the efficiency of muscle contraction following BA supplementation.
    • β-alanine supplementation enhances human skeletal muscle relaxation speed but not force production capacity

      Jones, Rebecca Louise; Hannah, Ricci; Minshull, Claire; Artioli, Guilherme Giannini; Harris, Roger C.; Sale, Craig (2015-09-20)
    • β-alanine supplementation improves in-vivo fresh and fatigued muscle relaxation speed

      Jones, Rebecca Louise; Barnett, T.C.; Davidson, Joel; Maritza, Billy; Fraser, William D.; Harris, Roger C.; Sale, Craig (2017-09-20)
    • β-alanine supplementation improves in-vivo fresh and fatigued muscle relaxation speed

      Jones, Rebecca Louise; Barnett, Cleveland Thomas; Davidson, Joel; Maritza, Billy; Fraser, William D.; Harris, Roger C.; Sale, Craig; Nottingham Trent University; University of East Anglia; Norfolk and Norwich University Hospital; et al. (Springer International Publishing AG, 2017-03-27)
      PURPOSE: In fresh muscle, supplementation with the rate-limiting precursor of carnosine, β-alanine (BA), results in a decline in muscle half-relaxation time (HRT) potentially via alterations to calcium (Ca2+) handling. Accumulation of hydrogen cation (H+) has been shown to impact Ca2+ signalling during muscular contraction, carnosine has the potential to serve as a cytoplasmic regulator of Ca2+ and H+ coupling, since it binds to both ions. The present study examined the effect of BA supplementation on intrinsic in-vivo isometric knee extensor force production and muscle contractility in both fresh and fatigued human skeletal muscle assessed during voluntary and electrically evoked (nerve and superficial muscle stimulation) contractions. METHODS: Twenty-three males completed two experimental sessions, pre- and post- 28 day supplementation with 6.4 g.day-1 of BA (n = 12) or placebo (PLA; n = 11). Isometric force was recorded during a series of voluntary and electrically evoked knee extensor contractions. RESULTS: BA supplementation had no effect on voluntary or electrically evoked isometric force production, or twitch electromechanical delay and time-to-peak tension. There was a significant decline in muscle HRT in fresh and fatigued muscle conditions during both resting (3 ± 13%; 19 ± 26%) and potentiated (1 ± 15%; 2 ± 20%) twitch contractions. CONCLUSIONS: The mechanism for reduced HRT in fresh and fatigued skeletal muscle following BA supplementation is unclear. Due to the importance of muscle relaxation on total energy consumption, especially during short, repeated contractions, BA supplementation may prove to be beneficial in minimising contractile slowing induced by fatigue. TRIAL REGISTRATION: The trial is registered with Clinicaltrials.gov, ID number NCT02819505.