• The effect of movement variability on putting proficiency during the golf putting stroke

      Richardson, Ashley K; Mitchell, Andrew C.S.; Hughes, Gerwyn T.G.; Abertay University; University of Bedfordshire; University of San Francisco (SAGE Publications Inc., 2018-04-04)
      Movement variability has been considered important to execute an effective golf swing yet is comparatively unexplored regarding the golf putt. Movement variability could potentially be important considering the small margins of error between a successful and a missed putt. The aim of this study was to assess whether variability of body segment rotations influence putting performance (ball kinematic measures). Eight golfers (handicap range 0–10) performed a 3.2 m level putt wearing retro-reflective markers which were tracked using a three-dimensional motion analysis system sampling at 120 Hz. Ball roll kinematics were recorded using Quintic Ball Roll launch monitor. Movement (segment) variability was calculated based on a scalene ellipsoid volume concept and correlated with the coefficient of variation of ball kinematics. Statistical analysis showed no significant relationships between segment variability and putting proficiency. One significant relationship was identified between left forearm variability and horizontal launch angle, but this did not result in deficits in putting success. Results show that performance variability in the backswing and downswing is not related to putting proficiency or the majority of ball roll measures. Differing strategies may exist where certain golfers may have more fluid movement patterns thereby effectively utilising variability of movement. Therefore, golf instructors should consider movement variability when coaching the golf putt.
    • “Small steps, or giant leaps?” Comparing game demands of U23, U18, and U16 English academy soccer and their associations with speed and endurance

      Smalley, Ben; Bishop, Chris; Maloney, Sean J.; Middlesex University; Queens Park Rangers Football Club (SAGE Publications Inc., 2021-05-26)
      The current study aimed to compare locomotive outputs across English U16, U18 and U23 academy soccer and investigate possible relationships with neuromuscular and aerobic capacities. Participants included 46 outfield players from an English Category Two soccer academy. Global positioning system (18 Hz) data were utilised to analyse locomotive outputs across twenty eleven-a-side matches in each age group. Maximal sprinting speed (MSS) and aerobic speed (MAS) were assessed at the beginning of the season. Absolute total distance (TD), high-speed running (HSR), acceleration and deceleration workloads were higher in U18’s and U23’s vs. U16’s (g = 1.09–2.58; p < 0.05), and absolute sprinting distances were higher in U23’s vs. U16’s (g = 0.96; p < 0.05). In addition, relative HSR outputs were higher in U23’s vs. U18’s (g = 1.84–2.07; p < 0.05). Across the whole cohort, players’ MSS was positively associated with absolute HSR and sprinting distances (ρ = 0.53–0.79; p < 0.05) but not with relative parameters. MAS was positively associated with total distance, decelerations, and both absolute and relative HSR outputs (ρ = 0.33–0.56; p < 0.05). Overall, absolute locomotive outputs were significantly higher in U23’s and U18’s vs. U16’s. Locomotive outputs were also associated with maximal sprinting and aerobic speeds. Thus, training programmes should be tailored to competition demands to optimally prepare each age group for competition and reflect the increasing demands of each level of competition. Further, improving physical fitness (speed and endurance) is likely to drive greater outputs in competition.