• Impact of intensified training and carbohydrate supplementation on immunity and markers of overreaching in highly trained cyclists

      Svendsen, Ida S.; Killer, Sophie C.; Carter, James M.; Randell, Rebecca K.; Jeukendrup, Asker E.; Gleeson, Michael; ; Loughborough University; PepsiCo Global Nutrition R&D (Springer Verlag, 2016-02-23)
      Purpose: To determine effects of intensified training (IT) and carbohydrate supplementation on overreaching and immunity. Methods: In a randomized, double-blind, crossover design, 13 male cyclists (age 25 ± 6 years, (Formula presented.) 72 ± 5 ml/kg/min) completed two 8-day periods of IT. On one occasion, participants ingested 2 % carbohydrate (L-CHO) beverages before, during and after training sessions. On the second occasion, 6 % carbohydrate (H-CHO) solutions were ingested before, during and after training, with the addition of 20 g of protein in the post-exercise beverage. Blood samples were collected before and immediately after incremental exercise to fatigue on days 1 and 9. Results: In both trials, IT resulted in decreased peak power (375 ± 37 vs. 391 ± 37 W, P < 0.001), maximal heart rate (179 ± 8 vs. 190 ± 10 bpm, P < 0.001) and haematocrit (39 ± 2 vs. 42 ± 2 %, P < 0.001), and increased plasma volume (P < 0.001). Resting plasma cortisol increased while plasma ACTH decreased following IT (P < 0.05), with no between-trial differences. Following IT, antigen-stimulated whole blood culture production of IL-1α was higher in L-CHO than H-CHO (0.70 (95 % CI 0.52–0.95) pg/ml versus 0.33 (0.24–0.45) pg/ml, P < 0.01), as was production of IL-1β (9.3 (95 % CI 7–10.4) pg/ml versus 6.0 (5.0–7.8) pg/ml, P < 0.05). Circulating total leukocytes (P < 0.05) and neutrophils (P < 0.01) at rest increased following IT, as did neutrophil:lymphocyte ratio and percentage CD4+ lymphocytes (P < 0.05), with no between-trial differences. Conclusion: IT resulted in symptoms consistent with overreaching, although immunological changes were modest. Higher carbohydrate intake was not able to alleviate physiological/immunological disturbances.
    • No evidence of dehydration with moderate daily coffee intake: a counterbalanced cross-over study in a free-living population

      Killer, Sophie C.; Blannin, Andrew K.; Jeukendrup, Asker E.; ; University of Birmingham (Public Library of Science, 2014-01-09)
      It is often suggested that coffee causes dehydration and its consumption should be avoided or significantly reduced to maintain fluid balance. The aim of this study was to directly compare the effects of coffee consumption against water ingestion across a range of validated hydration assessment techniques. In a counterbalanced cross-over design, 50 male coffee drinkers (habitually consuming 3-6 cups per day) participated in two trials, each lasting three consecutive days. In addition to controlled physical activity, food and fluid intake, participants consumed either 4X200 mL of coffee containing 4 mg/kg caffeine (C) or water (W). Total body water (TBW) was calculated pre- and post-trial via ingestion of Deuterium Oxide. Urinary and haematological hydration markers were recorded daily in addition to nude body mass measurement (BM). Plasma was analysed for caffeine to confirm compliance. There were no significant changes in TBW from beginning to end of either trial and no differences between trials (51.5±1.4 vs. 51.4±1.3 kg, for C and W, respectively). No differences were observed between trials across any haematological markers or in 24 h urine volume (2409±660 vs. 2428±669 mL, for C and W, respectively), USG, osmolality or creatinine. Mean urinary Na+ excretion was higher in C than W (p = 0.02). No significant differences in BM were found between conditions, although a small progressive daily fall was observed within both trials (0.4±0.5 kg; p<0.05). Our data show that there were no significant differences across a wide range of haematological and urinary markers of hydration status between trials. These data suggest that coffee, when consumed in moderation by caffeine habituated males provides similar hydrating qualities to water. © 2014 Killer et al.