• Large Eddy Simulation analysis on confined swirling flows in a gas turbine swirl burner

      Liu, Tao; Bai, Fuqiang; Zhao, Zixuan; Lin, Yuzhen; Du, Qing; Peng, Zhijun; Tianjin University; University of Ottawa; University of Bedfordshire; Beihang University (MDPI, 2017-12-07)
      This paper describes a Large Eddy Simulation (LES) investigation into flow fields in a model gas turbine combustor equipped with a swirl burner. A probability density function was used to describe the interaction physics of chemical reaction and turbulent flow as liquid fuel was directly injected into the combustion chamber and rapidly mixed with the swirling air. Simulation results showed that heat release during combustion accelerated the axial velocity motion and made the recirculation zone more compact. As the combustion was taking place under lean burn conditions, NO emissions was less than 10 ppm. Finally, the effects of outlet contraction on swirling flows and combustion instability were investigated. Results suggest that contracted outlet can enhance the generation of a Central Vortex Core (CVC) flow structure. As peak RMS of velocity fluctuation profiles at center-line suggested the turbulent instability can be enhanced by CVC motion, the Power Spectrum Density (PSD) amplitude also explained that the oscillation at CVC position was greater than other places. Both evidences demonstrated that outlet contraction can increase the instability of the central field.  [m1]Is’t right? Yes.
    • Laser interference field induced re-distribution of Ag nanoparticle arrays

      Yue, Ming; Liu, Mengnan; Li, Li; Liang, Xiubo; Wang, Lu; Wang, Zuobin; Changchun University of Science and Technology; University of Bedfordshire (IEEE, 2021-11-18)
      The wide application of metal nanoparticle arrays has attracted much attention in the field of nanotechnology. Such as quantum dots, structural colors, sensors, metamaterials. In this work, we fabricated periodic micro-and nanostructures through the interference of two beams with the same frequency and vibration direction. By controlling the spot energy and light field energy distribution of Gaussian interference lithography, the various surface characteristics of Ag-Si material system (Ag@Si) are optimized, and the mass transfer brought by Oswald ripening is used to control the Rayleigh instability in the thermal dewetting process. To achieve the purpose of the periodic gradient Ag nanoparticle arrays (AgNPs) pattern can be controlled. The experimental results show that the periodic micro-and nanostructures can be obtained by optimizing the spot energy and the number of pulses.
    • Life Cycle Assessment (LCA) of BEV's environmental benefits for meeting the challenge of ICExit (Internal Combustion Engine Exit)

      Zheng, Ge; Peng, Zhijun; University of Essex; University of Bedfordshire (Elsevier Ltd, 2021-02-19)
      Based on necessary literature review, LC (Life Cycle) emissions, in particular LCCO2 (Life Cycle CO2) emissions, of BEVs (Battery Electric Vehicles) have been assessed and compared with the most efficient ICEVs (Internal Combustion Engine Vehicles), such as non-plug-in HEVs (Hybrid Electric Vehicles) and diesel cars. By considering CO2 emissions from vehicle production, vehicle recycle and the entire process of energy flow (from the mining of the energy source to a vehicle being driven), LCCO2 emission models of BEVs and ICEVs were built. For comparing between BEVs and ICEVs in terms of their LC emissions, a new measure named SRPR (Square Root of Power and Range) has been proposed for correctly reflecting the powertrain's main performance. Results show that, although BEVs have much lower ECR (Energy Consumption Rate) than non-plug-in HEV and diesel cars, their LCCO2 are very variable, and are very dependent on LCCO2 of power generation mix of specific country. In some countries where thermal power generation, in particular coal power generation, is still dominant, BEVs’ LCCO2 are apparently higher than ICEVs. If a country would like to have their BEVs operating lower LCCO2 than ICEVs, the overall average LCCO2 from their power generation mix should be at least at the level about 320 g/kWh. As a case study, by analysing the power generation development trend and the BEV development trend in China, it suggests that their aim for developing BEVs to have lower LCCO2 than ICEVs in next two or three decades would be very difficult to meet. If they like to put priority on the reduction of LCCO2 of ground vehicles, BEVs could not be widely promoted in China until they made their power generation clean enough, probably at least in next 20 even 30 years. Finally, BEVs’ other LC pollutant emissions, such as NOx (Nitrogen Oxides), PM (Particulate Matters), SOx (Sulphur Oxides) would not be a very serious problem if those thermal power generations are equipped with adequate exhaust aftertreatment for removing those pollutant emissions.
    • Light-switching-light optical transistor based on metallic nanoparticle cross-chains geometry incorporating Kerr nonlinearity

      AbdelMalek, Fathi; Aroua, Walid; Haxha, Shyqyri; Flint, Ian; National Institute of Applied Science and Technology, Tunisia; University of Bedfordshire; 3Selex ES Ltd, Luton (Wiley-VCH Verlag, 2016-06-13)
      In this research work, we propose all-optical transistor based on metallic nanoparticle cross-chains geometry. The geometry of the proposed device consists of two silver nanoparticle chains arranged along the x- and z-axis. The x-chain contains a Kerr nonlinearity, the source beam is set at the left side of the later, while the control beam is located at the top side of the z-chain. The control beam can turn ON and OFF the light transmission of an incoming light. We report a theoretical model of a very small all-optical transistor proof-of-conceptmade of optical ‘light switching light’concept. We show that the transmission efficiency strongly depends on the control beam and polarization of the incoming light. We investigate the influence of a perfect reflector and reflecting substrate on the transmission of the optical signal when the control beam is turned ON and OFF. These new findings make our unique design a potential candidate for future highly-integrated optical information processing chips.
    • A low profile antenna for millimetre-wave body-centric applications

      Ur-Rehman, Masood; Malik, Nabeel A.; Yang, Xiaodong; Abbasi, Qammer Hussain; Xidian University (IEEE, 2017-09-27)
      Millimetre-Wave frequencies are a front runner contender for the next generation body-centric wireless communications. In this paper, design of a very low profile antenna is presented for body-centric applications operating in the millimetre-wave frequency band centred at 60 GHz. The antenna has an overall size of 14£10.5£1.15 mm3 and is printed on a flexible printed circuit board. The performance of the antenna is evaluated in off-body, on-body and body-to-body communication scenarios using a realistic numerical phantom and verified through measurements. The antenna has a bandwidth of 9.8 GHz and offers a gain of 10.6 dBi in off-body (free space) configuration while 12.1 dBi in on-body configuration. It also acheives an efficiency of 74% in off-body and 63% in on-body scenario. The small and flexible structure of the antenna along with excellent impedance matching, broad bandwidth, high gain and good efficiency makes it a suitable candidate to attain simultaneous data transmission/reception at millimetre-wave frequencies for the 5G body-centric applications.
    • Millimetre-wave antennas and systems for the future 5G

      Ur-Rehman, Masood; Abbasi, Qammer Hussain; Rahman, Atiqur; Khan, Imdad; Chattha, Hassan Tariq; Abdul Matin, Mohammad; University of Bedfordshire; Texas A & M University at Qatar; University of Glasgow; North South University, Dhaka; et al. (Hindawi, 2017-04-10)
      Editorial of the special issue on Millimetre-Wave Antennas and Systems for the Future 5G
    • Minimal mean-square error for 3D MIMO beamforming weighting

      Xu, C.; Cosmas, John; Zhang, Yue; Brunel University; University of Bedfordshire (Institution of Engineering and Technology, 2016-11-24)
      The 3D MIMO beamforming system needs a weighting method to determine the direction of beam whist reducing the interference for other beam areas operating at the same carrier frequency. The challenge is to determine the weights of the 3D MIMO beams to direct each beam towards its cluster of user terminals while placing its nulls at undesired user directions to minimise undesired interference. Therefore, the signal-to-interference-plus-noise ratio should be increased while the interference from the side lobes of the other beams reduced. A weight determining method is presented that constructs horizontal and vertical array weights, respectively, by minimising the mean-square error between the array pattern vector and the unit vector, where the unit vector expresses the desired direction for the array pattern and zero vector expresses the undesired direction. Since the rectangular planar array can be viewed as M linear arrays of N elements, the weight of the M–Nth element can be obtained based on the horizontal and vertical array weights.
    • Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications

      Otupiri, R.; Akowuah, Emmanuel K.; Haxha, Shyqyri; Kwame Nkrumah University of Science & Technology, Ghana; University of Bedfordshire (Optical Society of America, 2015-06-15)
      This paper presents a theoretical investigation of a novel holey fiber (Photonic Crystal Fiber (PCF)) multi-channel biosensor based on surface plasmon resonance (SPR). The large gold coated micro fluidic channels and elliptical air hole design of our proposed biosensor aided by a high refractive index over layer in two channels enables operation in two modes; multi analyte sensing and self-referencing mode. Loss spectra, dispersion and detection capability of our proposed biosensor for the two fundamental modes ( x 11 HE and y 11 HE ) have been elucidated using a Finite Element Method (FEM) and Perfectly Matching Layers (PML).
    • Multi-parameter AFM characterization of INS-1 cells

      Yang, Fan; Wang, Bowei; Wang, Jiajia; Chen, Yujuan; Wang, Zuobin; Changchun University of Science and Technology; University of Bedfordshire (IEEE, 2021-11-18)
      AFM-based single cell force spectroscopy has been employed wildly, while more work is needed for the mechanical detection of diabetes-related cells (INS-1 cells). In this study, a multi-parameter AFM characterization was performed to detect the mechanical properties of INS-1 cells in situ. High resolution topographies and concurrent mechanics were obtained by taking the advantage of the quantitatively imaging (QI) mode AFM. The analyses of force curves and force maps jointly presented the multiple parameters involved in the cell mechanics. The AFM force spectroscopy measurement provides full analysis and comprehensive understanding of cell mechanics.
    • Multiband split-ring resonator based planar inverted-F antenna for 5G applications

      Ishfaq, Muhammad Kamran; Rahman, Tharek Abd; Chattha, Hassan Tariq; Ur-Rehman, Masood; Universiti Teknologi Malaysia; Government College University, Faisalabad; Islamic University in Madinah; University of Bedfordshire (Hindawi, 2017-03-21)
      5G, the fifth generation of wireless communications, is focusing on multiple frequency bands, such as 6GHz, 10GHz, 15GHz, 28GHz, and 38GHz, to achieve high data rates up to 10 Gbps or more.The industry demands multiband antennas to cover these distant frequency bands, which is a task much more challenging. In this paper, we have designed a novel multiband split-ring resonator (SRR) based planar inverted-F antenna (PIFA) for 5G applications. It is composed of a PIFA, an inverted-L parasitic element, a rectangular shaped parasitic element, and a split-ring resonator (SRR) etched on the top plate of the PIFA.The basic PIFA structure resonates at 6GHz. An addition of a rectangular shaped parasitic element produces a resonance at 15GHz. The introduction of a split-ring resonator produces a band notch at 8GHz, and a resonance at 10GHz, while the insertion of an inverted-L shaped parasitic element further enhances the impedance bandwidth in the 10GHz band. The frequency bands covered, each with more than 1GHz impedance bandwidth, are 6GHz (5–7GHz), 10GHz (9–10.8GHz), and 15GHz (14-15GHz), expected for inclusion in next-generation wireless communications, that is, 5G. The design is simulated using Ansys Electromagnetic Suite 17 simulation software package.The simulated and the measured results are compared and analyzed which are generally in good agreement.
    • A novel disparity-assisted block matching-based approach for super-resolution of light field images

      Farag, Saber; Velisavljević, Vladan; University of Bedfordshire (IEEE, 2018-06-01)
      Currently, available plenoptic imaging technology has limited resolution. That makes it challenging to use this technology in applications, where sharpness is essential, such as film industry. Previous attempts aimed at enhancing the spatial resolution of plenoptic light field (LF) images were based on block and patch matching inherited from classical image super-resolution, where multiple views were considered as separate frames. By contrast to these approaches, a novel super-resolution technique is proposed in this paper with a focus on exploiting estimated disparity information to reduce the matching area in the super-resolution process. We estimate the disparity information from the interpolated LR view point images (VPs). We denote our method as light field block matching super-resolution. We additionally combine our novel super-resolution method with directionally adaptive image interpolation from [1] to preserve sharpness of the high-resolution images. We prove a steady gain in the PSNR and SSIM quality of the super-resolved images for the resolution enhancement factor 8x8 as compared to the recent approaches and also to our previous work [2].
    • A novel fuzzy logic variable geometry turbocharger and exhaust gas recirculation control scheme for optimizing the performance and emissions of a diesel engine

      Cheng, Li; Dimitriou, Pavlos; Wang, William; Peng, Jun; Aitouch, Abdel; University of Sussex; National Institute of Advanced Industrial Science and Technology (AIST), Japan; University of Bedfordshire; Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL), France (SAGE, 2018-10-31)
      Variable geometry turbocharger and exhaust gas recirculation valves are widely installed on diesel engines to allow optimized control of intake air mass flow and exhaust gas recirculation ratio. The positions of variable geometry turbocharger vanes and exhaust gas recirculation valve are predominantly regulated by dual-loop proportional–integral–derivative controllers to achieve predefined set-points of intake air pressure and exhaust gas recirculation mass flow. The setpoints are determined by extensive mapping of the intake air pressure and exhaust gas recirculation mass flow against various engine speeds and loads concerning engine performance and emissions. However, due to the inherent nonlinearities of diesel engines and the strong interferences between variable geometry turbocharger and exhaust gas recirculation, an extensive map of gains for the P, I, and D terms of the proportional–integral–derivative controllers is required to achieve desired control performance. The present simulation study proposes a novel fuzzy logic control scheme to determine appropriate positions of variable geometry turbocharger vanes and exhaust gas recirculation valve in realtime. Once determined, the actual positions of the vanes and valve are regulated by two local proportional–integral–derivative controllers. The fuzzy logic control rules are derived based on an understanding of the interactions among the variable geometry turbocharger, exhaust gas recirculation, and diesel engine. The results obtained from an experimentally validated one-dimensional transient diesel engine model showed that the proposed fuzzy logic control scheme is capable of efficiently optimizing variable geometry turbocharger and exhaust gas recirculation positions under transient engine operating conditions in real-time. Compared to the baseline proportional–integral–derivative controllers approach, both engine’s efficiency and total turbo efficiency have been improved by the proposed fuzzy logic control scheme while NOx and soot emissions have been significantly reduced by 34% and 82%, respectively.
    • Numerical investigation on implementing Oxy-Fuel Combustion (OFC) in an ethanol-gasoline Dual-Fuel Spark Ignition (DFSI) engine

      Li, Xiang; Pei, Yiqiang; Ajmal, Tahmina; Rana, Khaqan-Jim; Aitouche, Abdel; Mobasheri, Raouf; Peng, Zhijun; University of Bedfordshire; Tianjin University; CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille; et al. (Elsevier, 2021-06-08)
      To decrease even eliminate Carbon Dioxide (CO2) emissions for mitigating global warming, various technologies are being developed on combustion engines. In the research presented in this paper, a numerical investigation of Oxy-Fuel Combustion (OFC) technology on an ethanol-gasoline Dual-Fuel Spark Ignition (DFSI) engine under economical oxygen consumption at low and mid-high loads was performed by one-dimensional computer simulation. It is demonstrated that under OFC mode without other optimisation, Brake Mean Effective Pressure (BMEP) can meet the requirement at mid-high load, but it has a considerable decline at low load compared to Conventional Air Combustion (CAC) mode. Moreover, there is a considerable deterioration in Brake Specific Fuel Consumption (BSFC) compared to that of CAC mode. A practical method is proposed to optimise the DFSI engine performance under OFC mode by changing intake charge components and utilising appropriate Water Injection (WI) strategies. BMEP increases approximately 0.05 bar at low load. BSFC has a reduction of 3.35% and 1.82% at low load and mid-high load, respectively.
    • Numerical study on the effects of intake charge on oxy-fuel combustion in a dual-injection spark ignition engine at economical oxygen-fuel ratios

      Li, Xiang; Pei, Yiqiang; Peng, Zhijun; Ajmal, Tahmina; Rana, Khaqan-Jim; Aitouche, Abdel; Mobasheri, Raouf (SAGE, 2021-05-28)
      In order to decrease Carbon Dioxide (CO2) emissions, Oxy-Fuel Combustion (OFC) technology with Carbon Capture and Storage (CCS) is being developed in Internal Combustion Engine (ICE). In this article, a numerical study about the effects of intake charge on OFC was conducted in a dual-injection. Spark Ignition (SI) engine, with Gasoline Direct Injection (GDI), Port Fuel Injection (PFI) and P-G (50% PFI and 50% GDI) three injection strategies. The results show that under OFC with fixed Oxygen Mass Fraction (OMF) and intake temperature, the maximum Brake Mean Effective Pressure (BMEP) is each 5.671, 5.649 and 5.646 bar for GDI, P-G and PFI strategy, which leads to a considerable decrease compared to Conventional Air Combustion (CAC).
    • On the simultaneous inversion of micro-perforated panels' parameters: application to single and double air-cavity backed systems

      Tayong-Boumda, Rostand; Manyo Manyo, Jacques A.; Siryabe, Emmanuel; Ntamack, Guy E.; University of Bristol; Université de Ngaoundéré; Université du Havre (Acoustical Society of America, 2018-04-20)
      This study deals with the deduction of parameters of Micro-Perforated Panel (MPP) systems from impedance tube data. It is shown that there is an ambiguity problem that exists between the MPP thickness and its open area ratio. This problem makes it difficult to invert the reflection coefficient data fitting and therefore to deduct the MPP parameters. A technique is proposed to reduce this ambiguity by using an equation that links the hole diameter to the open area ratio. Reflection coefficient data obtained for two specimens with different characteristics is employed for searching the MPP parameters using a simulated annealing algorithm. The results obtained demonstrate the effectiveness of this technique.
    • Optical based noninvasive glucose monitoring sensor prototype

      Haxha, Shyqyri; Jhoja, Jaspreet; University of Bedfordshire (IEEE, 2016-12-13)
      Diabetes mellitus claims millions of lives every year. It affects the body in various ways by leading to many serious illnesses and premature mortality. Heart and kidney diseases, which are caused by diabetes, are increasing at an alarming rate. In this paper, we report a study of a noninvasive measurement technique to determine the glucose levels in the human body. Current existing methods to quantify the glucose level in the blood are predominantly invasive that involve taking the blood samples using finger pricking. In this paper, we report a spectroscopy-based noninvasive glucose monitoring system to measure glucose concentration. Near-infrared transmission spectroscopy is used and in vitro experiments are conducted, as well as in vivo. Our experimental study confirms a correlation between the sensor output voltage and glucose concentration levels. We report a low-cost prototype of spectroscopy-based noninvasive glucose monitoring system that demonstrates promising results in vitro and establishes a relationship between the optical signals and the changing levels of blood–glucose concentration.
    • Optical-based sensor prototype for continuous monitoring of the blood pressure

      Cohen, Zachary Joel Valentino; Haxha, Shyqyri; University of Bedfordshire (IEEE Sensors Journal, 2017-07-01)
      In this paper, we report a prototype ring sensor device for continuous measurement of blood pressure with the use of our, previously developed, heart rate monitoring ring device. An experiment is described where the heart rate device provides the voltage output of the heart using the transmission photoplethysmography (PPG) method and predicts the blood pressure’s value to ±5% of its true value. We report a novel potential non-invasive, low cost, continuous heart rate and blood pressure monitoring device that uses transmission PPG instead of the traditional cuff method to observe the changes in volume of the pressure through the arteries of the finger. The continuous samples are averaged out constantly. We employed the PPG technique to optically determine the blood volume changes in the arteries of the finger. A Pearson’s product moment correlation coefficient proved an r value of 0.86 showing strong linear correlation between the average voltage of the heart rate and the corresponding blood pressure. The proposed blood pressure ring sensor device was tested and benchmarked (against Nonin 2120 benchmark blood pressure device) four participants for a continuous period of four hours, where the average Mean Arterial Pressure (MAP) (using Nonin 2120) for four hours was at 98.92mmHg and the average predicted MAP was at 92.8mmHg, which demonstrates an accuracy of 93.8%.The average real systolic pressure (using Nonin 2120) was at 144.25mmHg and the predicted average systolic pressure was at 132.77mmHg which shows an accuracy of 92%. The average real diastolic pressure (using Nonin 2120) was at 76.25mmHg and the predicted diastolic pressure was 72.7mmHg, showing an accuracy of 95.5%. 
    • Optimisation of dispersion compensating in a long-haul fibre for RF transmission of up to 100Gbit/s by using RZ and NRZ formats

      Paloi, Fadil; Mirza, Taimur; Haxha, Shyqyri; University of Bedfordshire (Elsevier, 2016-12-02)
      With the recent data rate increase it is very challenging to build a fibre optic network that would enable a high data rate transmission over a long haul distance. The signal suffers large degradation over a certain distance due to distortion by the nonlinear effects of the optical fibres. In particular, transmission of high data rates over existing fibre optic systems, while keeping the cost low, avoiding an increase of the system’s complexity and the usage of expensive devices, would be a very challenging task. In this paper, we address this problem by increasing the transmission distance in the fibre optic links for up to 2500km. We have used Standard Single Mode Fibre (SSMF) and Dispersion Compensation Fibre (DCF), where DCF is used as a loss compensator in Radio-Over-Fibre (RoF) systems. A mixture combination of the pre, post and symmetrical fibre compensation schemes were developed to overcome the dispersion in the fibre. We have found that in order to achieve high RF over fibre optic system performance for high data rates and long transmission, there is a requirement to upgrade the optical configuration scheme in a proportional way, by raising the length of the fibre span, compensation span and amplification. We have reported optimised RF over fibre configuration schemes that would have a great impact on reducing the cost, reducing the system’s complexity and avoiding usage of expensive devices, in order to achieve high data rate transmission over existing fibre optic systems.
    • Optimising microscopic spray characteristics and particle emissions in a dual-injection spark ignition (SI) engine by changing GDI injection pressure

      Li, Xiang; Li, Dayou; Pei, Yiqiang; Peng, Zhijun; Tianjin University; University of Bedfordshire; University of Lincoln (SAGE, 2022-03-01)
      Regarding reducing particle emissions from dual-injection spark ignition engines, most of the existing research focused on the benefits of using alcohol fuels. However, a comprehensive study of the effects of fuel injection pressure on microscopic spray characteristics and particle emissions in dual-injection spark ignition engines fuelled with gasoline has not been reported before. In this paper, with the assistance of phase Doppler particles analyser system and fast particle analyser, a study of optimising microscopic spray characteristics and particle emissions in a dual-injection spark ignition engine fuelled with gasoline by changing GDI injection pressure was conducted. The results show that by increasing injection pressure from 5.5 MPa to 18 MPa, both normal and tangential components of droplet velocity increase, but the possibility of spray impingement would not increase a lot. Higher injection pressure would increase the probability of small droplets, and more droplets would collapse with a mode of continuous ripping or break down abruptly. From jet’s central axis to sides, Sauter mean diameter increases first, then reduces outside the spray boundary. Increasing injection pressure from 5.5 MPa to 18 MPa reduces total particle number concentration, which is 53.98% and 45.44% at 2 bar and 10 bar, respectively. Meanwhile, the peak of particle number distribution curve decreases from 3.01×106 to 1.43×106 at 2 bar, whilst reducing from 1.08×106 to 5.33×105 at 10 bar. Overall, this paper comprehensively analyses the effects of fuel injection pressure on microscopic spray characteristics and particle emissions, whilst offering a practical approach to reduce particle emissions in dual-injection SI engines fuelled with gasoline.
    • Oxy-fuel combustion for carbon capture and storage in internal combustion engines - a review

      Li, Xiang; Peng, Zhijun; Pei, Yiqiang; Ajmal, Tahmina; Rana, Khaqan-Jim; Aitouche, Abdel; Mobasheri, Raouf; ; University of Bedfordshire; Tianjin University; et al. (2021-08-18)
      As the impacts of global warming have become increasingly severe, oxy-fuel combustion has been widely considered a promising solution for carbon capture and storage (CCS) to reduce carbon dioxide (CO2) to achieve net-zero emissions. In the past few decades, researchers around the world have demonstrated improvements by the application of oxy-fuel combustion to internal combustion (IC) engines. This article presents a comprehensive review of the experimental and simulation studies about oxy-combustion for CCS in IC engines. To give a more comprehensive understanding, it has included a detailed explanation of the essential components contained in an oxy-fuel IC engine and its typical operating parameters. The oxy-fuel IC engine components include the system of oxygen supply, exhaust gas recirculation (EGR), water injection, fuel injection, and CCS. In order to optimise the combustion process, it is required to adopt the appropriate values for the oxygen concentration, EGR rate, ignition timing, compression ratio, fuel injection, and water injection in oxy-fuel engines. The detailed literature review and analysis presented provide a basis for the selection of oxy-fuel combustion for CCS as a prospective solution to reduce carbon emissions in IC engines.