• Characteristics of near-nozzle spray development from a fouled GDI injector

      Zhou, Jianwei; Pei, Yiqiang; Peng, Zhijun; Zhang, Yanfeng; Qin, Jing; Wang, Li; Liu, Changwen; Zhang, Xiaoyu; Tianjin University; University of Bedfordshire; et al. (Elsevier Ltd, 2018-03-16)
      The near-nozzle spray development of a typical fouled gasoline direct injection (GDI) injector was investigated. The fouled injector had been used in a stratified-charge combustion GDI engine and showed typical characteristics, such as accumulated deposits inside and around the nozzles and a reduced flow rate of 2.9–5.7%. Back-illumination and Mie-scattering methods were employed in spray experiments, in conjunction with a high speed camera and a macro lens, to assess the near-nozzle spray behaviors. The experimental results show that at all injection pressures tested, the interaction between deposits and spray led to several poor spray behaviors during the full injection evolution, including spray distortion, residual fuel storage in the nozzles and deposits layer, liquid splashing, the formation of ligament and large droplets and tip wetting/dripping. These effects all may result in high soot emissions. The after-injection stage of the fouled injector produced more liquid ligaments than that of the new injector. It was also found that high injection pressures did not improve atomization during after-injection, nor reduce the amounts of ligaments and droplet clusters beyond the main spray boundary. The plume width and projected spray area of a single nozzle in the fouled injector were decreased by 5–7% and 17–20%, respectively, due to fuel flow losses. The delays in the start of injection and end of injection were approximately 20 μs and 30–40 μs, respectively.
    • Numerical investigation on implementing Oxy-Fuel Combustion (OFC) in an ethanol-gasoline Dual-Fuel Spark Ignition (DFSI) engine

      Li, Xiang; Pei, Yiqiang; Ajmal, Tahmina; Rana, Khaqan-Jim; Aitouche, Abdel; Mobasheri, Raouf; Peng, Zhijun; University of Bedfordshire; Tianjin University; CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille; et al. (Elsevier, 2021-06-08)
      To decrease even eliminate Carbon Dioxide (CO2) emissions for mitigating global warming, various technologies are being developed on combustion engines. In the research presented in this paper, a numerical investigation of Oxy-Fuel Combustion (OFC) technology on an ethanol-gasoline Dual-Fuel Spark Ignition (DFSI) engine under economical oxygen consumption at low and mid-high loads was performed by one-dimensional computer simulation. It is demonstrated that under OFC mode without other optimisation, Brake Mean Effective Pressure (BMEP) can meet the requirement at mid-high load, but it has a considerable decline at low load compared to Conventional Air Combustion (CAC) mode. Moreover, there is a considerable deterioration in Brake Specific Fuel Consumption (BSFC) compared to that of CAC mode. A practical method is proposed to optimise the DFSI engine performance under OFC mode by changing intake charge components and utilising appropriate Water Injection (WI) strategies. BMEP increases approximately 0.05 bar at low load. BSFC has a reduction of 3.35% and 1.82% at low load and mid-high load, respectively.