• MicroRNAs for virus pathogenicity and host responses, identified in SARS-CoV-2 genomes, may play roles in viral-host co-evolution in putative zoonotic host species

      Lange, Sigrun; Arisan, Elif Damla; Grant, Guy H.; Uysal-Onganer, Pinar; University of Westminster; Gebze Technical University; University of Bedfordshire (MDPI, 2021-01-16)
      Our recent study identified seven key microRNAs (miR-8066, 5197, 3611, 3934-3p, 1307-3p, 3691-3p, 1468-5p) similar between SARS-CoV-2 and the human genome, pointing at miR-related mechanisms in viral entry and the regulatory effects on host immunity. To identify the putative roles of these miRs in zoonosis, we assessed their conservation, compared with humans, in some key wild and domestic animal carriers of zoonotic viruses, including bat, pangolin, pig, cow, rat, and chicken. Out of the seven miRs under study, miR-3611 was the most strongly conserved across all species; miR-5197 was the most conserved in pangolin, pig, cow, bat, and rat; miR-1307 was most strongly conserved in pangolin, pig, cow, bat, and human; miR-3691-3p in pangolin, cow, and human; miR-3934-3p in pig and cow, followed by pangolin and bat; miR-1468 was most conserved in pangolin, pig, and bat; while miR-8066 was most conserved in pangolin and pig. In humans, miR-3611 and miR-1307 were most conserved, while miR-8066, miR-5197, miR-3334-3p and miR-1468 were least conserved, compared with pangolin, pig, cow, and bat. Furthermore, we identified that changes in the miR-5197 nucleotides between pangolin and human can generate three new miRs, with differing tissue distribution in the brain, lung, intestines, lymph nodes, and muscle, and with different downstream regulatory effects on KEGG pathways. This may be of considerable importance as miR-5197 is localized in the spike protein transcript area of the SARS-CoV-2 genome. Our findings may indicate roles for these miRs in viral-host co-evolution in zoonotic hosts, particularly highlighting pangolin, bat, cow, and pig as putative zoonotic carriers, while highlighting the miRs' roles in KEGG pathways linked to viral pathogenicity and host responses in humans. This in silico study paves the way for investigations into the roles of miRs in zoonotic disease.
    • Targeted editing of SlMAPK6 using CRISPR/Cas9 technology to promote the development of axillary buds in tomato plants

      Li, Yunzhou; Yue, Ningbo; Basit, Abdul; Li, Yulong; Zhang, Dalong; Qin, Lei; Crabbe, M. James C.; Xu, Wen; Wang, Yong; Yan, Jianmin; et al. (Canadian Center of Science and Education, 2021-01-15)
      The mitogen-activated protein kinase (MAPK) cascade signaling system has been relatively conserved throughout the evolution of eukaryotes and is involved in the regulation of growth and development and metabolism. In this study, dwarf tomato plants were used as the research material. First, the tissue-specific expression of SlMAPK6 was measured in wild-type plants by quantitative RT-PCR. The results showed that SlMAPK6 was highly expressed in the tissues of the stems, leaves and flowers but was expressed at low levels in the tissues of the roots, sepals and fruits. Second, SlMAPK6-knockout lines CRISPR-3 and CRISPR-7 were obtained by CRISPR-Cas9 technology and Agrobacterium-mediated transformation. Compared with wild-type, the mutant lines CRISPR-3 and CRISPR-7 showed significant phenotypic characteristics, such as increased numbers of axillary buds and true leaves, thickened stems, and longer leaflets. In addition, to explore the molecular mechanism by which MAPK regulates axillary bud growth, we also showed that SlMAPK6 positively regulates the strigolactone synthesis genes SlCCD7 and SlCCD8 and the gibberellin (GA) synthesis genes GA20ox3 and GA3ox1 and negatively regulates the axillary bud development-related genes Ls, BL and BRC1b/TCP8 and the GA synthesis inhibitory gene GAI. Therefore, SlMAPK6 appears to regulate the synthesis of strigolactone and GA to induce the growth and development of tomato axillary buds.
    • Migration of BEAS-2B cells enhanced by H1299 cell derived-exosomes

      Wang, Shuwei; Ju, Tuoyu; Wang, Jiajia; Yang, Fan; Qu, Kaige; Liu, Wei; Wang, Zuobin; Jilin University; Changchun University of Science and Technology; University of Bedfordshire (Elsevier Ltd, 2021-01-12)
      Previous studies reported that exosomes (Exos) secreted by tumor cells could affect the tumor cells themselves and normal cells. However, the effects of exosomes derived from tumor cells on normal cells’ migration and mechanical characteristics are rarely reported. This work explores the effects of H1299 cell-derived exosomes (H1299-Exos) on the migration of BEAS-2B cells, and analyzes possible mechanical mechanisms. In the experiments, exosomes were isolated from the culture supernatants of H1299 cells by ultracentrifugation. The H1299-Exos were confirmed by scanning electron microscope (SEM) and western blotting (WB). The BEAS-2B cell migration was assessed using scratch assays. Cytoskeletal structure changes were detected by immunofluorescence. Surface morphology and mechanical properties were measured by atomic force microscopy (AFM). After incubation with H1299-Exos for 48 h, BEAS-2B cells enhanced migration ability, with increased filopodia and cytoskeletal rearrangements. The changes in the morphology and mechanical properties of the cells caused by H1299-Exos were detected using AFM, including the increase in cell length and the decrease in cell height, Young's modulus and adhesion. In short, H1299-Exos promoted the BEAS-2B cell migrations. It indicates that the morphological and mechanical properties can be used as a means to assess normal cell alterations induced by tumor cell derived-exosomes. This provides a method for studying the effects of exosomes secreted by tumor cells on normal cells and the changes in their physical properties.
    • Effects of Tricholoma matsutake (Agaricomycetes) extracts on promoting proliferation of HaCaT cells and accelerating mice wound healing

      Zhu, Wenyu; Chen, Yujuan; Qu, Kaige; Lai, Chunyan; Lu, Zhengcheng; Yang, Fan; Ju, Tuoyu; Wang, Zuobin; ; Changchun University of Science and Technology; et al. (Begell House, 2021-01-01)
      Tricholoma matsutake is popular in Asian countries because of its edibility and medicinal use. T. matsutake is a precious natural medicinal fungus, and it is widely used in food and biological products. This study aimed to explore the mechanism of T. matsutake on promoting proliferation of human immortalized keratinocyte (HaCaT) cells and accelerating wound healing in mice. The MTT assay was used to test the effects of three different T. matsutake extracts (0, 62.5, 125, 250, 500, and 1000 μg/mL) on HaCaT cell viability. HaCaT cells were treated with the three T. matsutake extracts (100, 500 μg/mL) and morphological and biophysical properties were detected by atomic force microscopy with JPK data processing. Western blot analysis detected Notch signaling pathways of HaCaT cells treated with 50% ethanol extract of T. matsutake (50%T) for 24 h (100, 500 and 1000 μg/mL). Mouse wounds were treated with 50%T for 15 days. Wound healing effects were observed on the back skin of mice at different times. The quality of wound healing was estimated by histological staining (hematoxylin and eosin and Masson's trichrome). All data were counted by GraphPad Prism 5 software. The increased concentration of T. matsutake remarkably promoted HaCaT cell proliferation. The Young's modulus of HaCaT cells showed the biggest increase from 1.73 ± 0.13 kPa (0 μg/mL) to 4.57 ± 0.16 kPa (500 μg/mL) in the 50%T group. The Notch1/Jagged1 pathways were upregulated with an increase in concentration (0, 100, 500, and 1000 μg/mL). Moreover, compared with the negative and positive control groups, T. matsutake promoted wound healing in mice by epidermal regeneration, subepidermal tissue formation, and collagen deposition. The results showed that T. matsutake promotes not only proliferation of HaCaT cells but also wound healing in mice.
    • Bovine milk fat globule epidermal growth factor Ⅷ activates PI3K/Akt signaling pathway and attenuates sarcopenia in rat model induced by D-galactose

      Li, He; Wang, Rongchun; Wang, Lifeng; Li, Lin; Ma, Ying; Zhou, Shaobo; Jiangsu Normal University; Harbin Institute of Technology; Northeast Agriculture University; University of Bedfordshire (Elsevier, 2020-12-17)
      To develop a more effective and safer treatment for sarcopenia, this research investigated the anti-sarcopenia mechanism of Milk Fat Globule Epidermal Growth Factor Ⅷ (MFG-E8) from the liver function and metabolism in sarcopenic model rat. After 4 weeks nutritional intervention experiment, MFG-E8 can significantly increase the gastrocnemius mass in rat. The mechanism of MFG-E8 in improving sarcopenia was related to its promotional capacity to the activities of superoxide dismutase (SOD) activity in serum, Glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) in liver. Meanwhile, MFG-E8 could also down-regulate obesity-related indicators, such as triglyceride (TG) and Non-esterified fatty acid (NEFA). The analysis of liver and gastrocnemius histopathology found that MFG-E8 could reduce the accumulation of fatty vesicles, improve liver function, thereby alleviating gastrocnemius tissue inflammation. In vitro experiments, myoblasts obtained from gastrocnemius tissue showed that MFG-E8 could reduce mitochondrial autophagy and inhibit cell apoptosis. In addition, MFG-E8 could up-regulate the phosphorylation level of PI3K via activating PI3K/Akt signaling pathway in gastrocnemius tissue, and promote the formation of muscle fibers, thereby increasing muscle mass. Moreover, MFG-E8 could also promote the formation of neuromuscular junctions by up-regulating the mRNA and protein expression of MusK in gastrocnemius.
    • QSAR and molecular docking for the search of AOX inhibitors: a rational drug discovery approach

      Rosell-Hidalgo, Alicia; Young, Luke; Moore, Anthony L.; Ghafourian, Taravat; University of Sussex; University of Bedfordshire (Springer Science and Business Media Deutschland GmbH, 2020-12-08)
      The alternative oxidase (AOX) is a monotopic diiron carboxylate protein that catalyses the oxidation of ubiquinol and the reduction of oxygen to water. Although a number of AOX inhibitors have been discovered, little is still known about the ligand–protein interaction and essential chemical characteristics of compounds required for a potent inhibition. Furthermore, owing to the rapidly growing resistance to existing inhibitors, new compounds with improved potency and pharmacokinetic properties are urgently required. In this study we used two computational approaches, ligand–protein docking and Quantitative Structure–Activity Relationships (QSAR) to investigate binding of AOX inhibitors to the enzyme and the molecular characteristics required for inhibition. Docking studies followed by protein–ligand interaction fingerprint (PLIF) analysis using the AOX enzyme and the mutated analogues revealed the importance of the residues Leu 122, Arg 118 and Thr 219 within the hydrophobic cavity. QSAR analysis, using stepwise regression analysis with experimentally obtained IC50 values as the response variable, resulted in a multiple regression model with a good prediction accuracy. The model highlighted the importance of the presence of hydrogen bonding acceptor groups on specific positions of the aromatic ring of ascofuranone derivatives, acidity of the compounds, and a large linker group on the compounds on the inhibitory effect of AOX.
    • Effect and mechanism of Ganoderma lucidum spores on alleviation diabetic cardiomyopathy in a pilot in vivo study

      Shaher, Fahmi; Wang, Shuqiu; Qiu, Hong-Bin; Hu, Yu; Zhang, Yu; Wang, Weiqun; AL-ward, Hisham; Abdulghani, Mahfoudh A. M.; Baldi, Salem; Zhou, Shaobo; et al. (Dove Press, 2020-12-07)
      Background: Ganoderma lucidum spores (GLS) exhibit disease prevention properties, but no study has been carried out on the anti-diabetic cardiomyopathy property of GLS. The aim of this study is to evaluate the hyperglycemia-mediated cardiomyopathy protection and mechanisms of GLS in diabetic rats induced by streptozotocin (STZ). Methods: Male SD rats were randomly divided into three groups. Two groups were given STZ (50 mg/kg, i.p.) treatment and when their fasting plasma glucose was above 16.7 mmol/L, one group was given placebo, as diabetic group; and another group was given GLS (300 mg/kg) treatment. The group without STZ treatment was given placebo as a control group. The experiment lasted 70 days. The histology of myocardium and biomarkers of antioxidant, myocardial injury, pro-inflammatory cytokines, pro-apoptotic proteins and phosphorylation of key proteins in PI3K/AKT pathway were assessed. Results: Biochemical analysis showed that GLS treatment significantly reduced the blood glucose (-20.3%) and triglyceride (-20.4%) levels compared to diabetic group without treatment. GLS treatment decreased the content of MDA (-25.6%) and activity of lactate dehydrogenase (-18.9%) but increased the activity of GSH-Px (65.4%). Western blot analysis showed that GLS treatment reduced the expression of both alpha-smooth muscle actin and brain natriuretic peptide. Histological analysis on the cardiac tissue micrographs showed that GLS treatment reduced the collagen fibroses and glycogen reactivity in myocardium. Both western blot and immunohistochemistry analyses showed that GLS treatment decreased the expression levels of pro-inflammatory factors (cytokines IL-1β, and TNF-α) as well as apoptosis regulatory proteins (Bax, caspase-3 and -9), but increased the Bcl-2. Moreover, GLS treatment significantly increased the phosphorylation of key proteins involved in PI3K/AKT pathway, e.g. p-AKT p-PI3K and mTOR. Conclusion: The results indicated that GLS treatment alleviates diabetic cardiomyopathy by reducing hyperglycemia, oxidative stress, inflammation, apoptosis and further attenuating the fibrosis and myocardial dysfunction induced by STZ through the stimulation of the PI3K/Akt/mTOR signaling pathway.
    • Critical role of the maternal immune system in the pathogenesis of autism spectrum disorder

      Ravaccia, Davide; Ghafourian, Taravat; University of Sussex (MDPI AG, 2020-12-01)
      Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterised by impairments in communication, social interaction, and the presence of restrictive and repetitive behaviours. Over the past decade, most of the research in ASD has focused on the contribution of genetics, with the identification of a variety of different genes and mutations. However, the vast heterogeneity in clinical presentations associated with this disorder suggests that environmental factors may be involved, acting as a “second hit” in already genetically susceptible individuals. To this regard, emerging evidence points towards a role for maternal immune system dysfunctions. This literature review considered evidence from epidemiological studies and aimed to discuss the pathological relevance of the maternal immune system in ASD by looking at the proposed mechanisms by which it alters the prenatal environment. In particular, this review focuses on the effects of maternal immune activation (MIA) by looking at foetal brain-reactive antibodies, cytokines and the microbiome. Despite the arguments presented here that strongly implicate MIA in the pathophysiology of ASD, further research is needed to fully understand the precise mechanisms by which they alter brain structure and behaviour. Overall, this review has not only shown the importance of the maternal immune system as a risk factor for ASD, but more importantly, has highlighted new promising pathways to target for the discovery of novel therapeutic interventions for the treatment of such a life-changing disorder.
    • Cellular mechanisms governing glucose-dependent insulinotropic polypeptide secretion.

      Reimann, Frank; Diakogiannaki, Eleftheria; Moss, Catherine E.; Gribble, Fiona M.; Wellcome Trust; University of Cambridge (Elsevier, 2020-11-19)
      Glucose-dependent insulinotropic polypeptide (GIP) is a gut hormone secreted from the upper small intestine, which plays an important physiological role in the control of glucose metabolism through its incretin action to enhance glucose-dependent insulin secretion. GIP has also been implicated in postprandial lipid homeostasis. GIP is secreted from enteroendocrine K-cells residing in the intestinal epithelium. K-cells sense a variety of components found in the gut lumen following food consumption, resulting in an increase in plasma GIP signal dependent on the nature and quantity of ingested nutrients. We review the evidence for an important role of sodium-coupled glucose uptake through SGLT1 for carbohydrate sensing, of free-fatty acid receptors FFAR1/FFAR4 and the monoacyl-glycerol sensing receptor GPR119 for lipid detection, of the calcium-sensing receptor CASR and GPR142 for protein sensing, and additional modulation by neurotransmitters such as somatostatin and galanin. These pathways have been identified through combinations of in vivo, in vitro and molecular approaches.
    • Spatial genetic and epigenetic structure of Thlaspi arvense (field pennycress) in China

      Guan, Yabin; Qu, Peng; Lu, Shugang; Crabbe, M. James C.; Zhang, Ti-Cao; Geng, Yu-peng; Yunnan University; Oxford University; Shanxi University; University of Bedfordshire; et al. (Genetics Society of Japan, 2020-11-11)
      (Received 13 May 2020, accepted 15 July 2020; J-STAGE Advance published date: 11 November 2020) Thlaspi arvense (field pennycress) is widespread in temperate regions of the northern hemisphere. We estimated the genetic and epigenetic structure of eight T. arvense populations (131 individuals) in China using amplified fragment length polymorphism and methylation-sensitive amplified polymorphism molecularmarker techniques. We detected low diversity at both genetic (mean = 0.03; total = 0.07) and epigenetic (mean = 0.04; total = 0.07) levels, while significant genetic (FST = 0.42, P < 0.001) and epigenetic (FST = 0.32, P < 0.001) divergence was found across the distribution range. Using Mantel testing, we found spatial genetic and epigenetic differentiation, consistent with isolation-by-distance models. We also identified a strong correlation between genetic and epigenetic differentiation (r = 0.7438, P < 0.001), suggesting genetic control of the epigenetic variation. Our results indicate that mating system, natural selection and gene flow events jointly structure spatial patterns of genetic and epigenetic variation. Moreover, epigenetic variation may serve as a basis of natural selection and ecological evolution to enable species to adapt to heterogeneous habitats. Our study provides novel clues for the adaptation of T. arvense.
    • Combination of Sanger and target-enrichment markers supports revised generic delimitation in the problematic ‘Urera clade’ of the nettle family (Urticaceae)

      Wells, Tom; Maurin, Olivier; Dodsworth, Steven; Friis, Ib; Cowan, Robyn S.; Epitawalage, Niroshini; Brewer, Grace E.; Forest, Felix; Baker, William; Monro, Alexandre; et al. (Elsevier, 2020-11-05)
      Urera Gaudich, s.l. is a pantropical genus comprising c. 35 species of trees, shrubs, and vines. It has a long history of taxonomic uncertainty, and is repeatedly recovered as polyphyletic within a poorly resolved complex of genera in the Urticeae tribe of the nettle family (Urticaceae). To provide generic delimitations concordant with evolutionary history, we use increased taxonomic and genomic sampling to investigate phylogenetic relationships among Urera and associated genera. A cost-effective two-tier genome-sampling approach provides good phylogenetic resolution by using (i) a taxon-dense sample of Sanger sequence data from two barcoding regions to recover clades of putative generic rank, and (ii) a genome-dense sample of target-enrichment data for a subset of representative species from each well-supported clade to resolve relationships among them. The results confirm the polyphyly of Urera s.l. with respect to the morphologically distinct genera Obetia, Poikilospermum and Touchardia. Afrotropic members of Urera s.l. are recovered in a clade sister to the xerophytic African shrubs Obetia; and Hawaiian ones with Touchardia, also from Hawaii. Combined with distinctive morphological differences between Neotropical and African members of Urera s.l., these results lead us to resurrect the previously synonymised name Scepocarpus Wedd. for the latter. The new species epiphet Touchardia oahuensis T.Wells & A.K. Monro is offered as a replacement name for Touchardia glabra non H.St.John, and subgenera are created within Urera s.s. to account for the two morphologically distinct Neotropical clades. This new classification minimises taxonomic and nomenclatural disruption, while more accurately reflecting evolutionary relationships within the group.
    • COVID-19 and Parkinson’s disease: shared inflammatory pathways under oxidative stress

      Chaudhry, Zahara Latif; Klenja, Donika; Janjua, Najma; Cami-Kobeci, Gerta; Ahmed, Bushra Y.; University of Bedfordshire; University of Bristol; Kawasaki Medical School (MDPI, 2020-10-31)
      The current coronavirus pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a serious global health crisis. It is a major concern for individuals living with chronic disorders such as Parkinson’s disease (PD). Increasing evidence suggests an involvement of oxidative stress and contribution of NFκB in the development of both COVID-19 and PD. Though, it is early to identify if SARS-CoV-2 led infection enhances PD complications, it is likely that oxidative stress may exacerbate PD progression in COVID-19 affected individuals and/or vice versa. In the current study, we sought to investigate whether NFκB-associated inflammatory pathways following oxidative stress in SARS-CoV-2 and PD patients are correlated. Toward this goal, we have integrated bioinformatics analysis obtained from BLASTP search for similarities between SARS-CoV-2 proteins and human proteome, literature review, and laboratory data obtained in a human cell model of PD. A Parkinson’s like state was created in 6OHDA-induced differentiated dopaminergic neurons (dDCNs) obtained from ReNVM cell line. The results indicated that SARS-CoV-2 infection and 6OHDA-induced toxicity triggered stimulation of caspases -2, -3 and -8 via the NFκB pathway resulting in death of dDCNs. Furthermore, specific inhibitors for NFκB and studied caspases reduced the death of stressed dDCNs. The findings suggest that knowledge of the selective inhibition of caspases and NFκB activation may contribute to development of potential therapeutic approaches for the treatment of COVID-19 and PD.
    • Establishment of a stable complex formed from whey protein isolate and chitosan and its stability under environmental stresses

      Xu, Weili; Tang, Yinzhao; Yang, Yang; Wang, Guijie; Zhou, Shaobo; Harbin Institute of Technology; University of Bedfordshire (Elsevier, 2020-10-22)
      This study aimed to investigate the stability of a complex formed with whey protein isolate (WPI) and chitosan under environmental stress. The optical density, particle size, zeta potential, chemical characteristics, electrostatic interactions, and surface morphology were evaluated for the stable complexes; the optimum conditions for the generation of the stable complex were 0.2% (wt/wt) whey protein with 0.05% (wt/wt) chitosan at pH 5.7. Under these conditions, the complex particle size was 217.8 ± 11.3 nm and the zeta potential was 16.7 ± 0.92 mV. The complex was formed through electrostatic interactions between the amine groups of chitosan (-NH3+) and carboxyl groups of whey protein (-COO−), and contained a porous network interspaced by heterogeneously sized vacuoles. The complex displayed stable physiochemical characteristics under environmental stresses including NaCl (0–75 mM) or sugar (0–5%) at ambient temperature and upon heating for 15 min at 25–65 °C, up to 65 °C for 30 min. Moreover, the complex could be stably stored for 30 d at 4 °C and for 20 d at 25 °C. The present results provide theoretical insights into the industrial production of chitosan-protein complexes and for microencapsulation of sensitive food or medicinal ingredients to increase their intestinal absorption.
    • Increased epigenetic diversity and transient epigenetic memory in response to salinity stress in Thlaspi arvense.

      Geng, Yu-peng; Chang, Na; Zhao, Yuewan; Qin, Xiaoying; Lu, Shugang; Crabbe, M. James C.; Guan, Yabin; Zhang, Ti-Cao (Wiley, 2020-09-20)
      Epigenetic diversity could play an important role in adaptive evolution of organisms, especially for plant species occurring in new and stressful environments. Thlaspi arvense (field pennycress), a valuable oilseed crop, is widespread in temperate regions of the northern hemisphere. In this study, we investigated the effect of salinity stress on the epigenetic variation of DNA methylation and epigenetic stress memory in pennycress using methylation-sensitive amplification polymorphism (MSAP) markers. We examined how the status of DNA methylation changes across individuals in response to salinity stress and whether such an effect of maternal stress could be transferred to offspring for one or two generations in nonstressed environments. Our results based on 306 epiloci indicated no consistent change of DNA methylation status in specific epiloci across individuals within the same conditions. In contrast, we found that the epigenetic diversity at population level increased significantly in response to the stimulation of salinity stress; and this “stimulation effect” could be transferred partially in the form of stress memory to at least two generations of offspring in nonstressed environments. In addition, we observed a parallel change in functionally important traits, that is, phenotypic variation was significantly higher in plants grown under salinity stress compared with those of control groups. Taken together, our results provide novel clues for the increased spontaneous epimutation rate in response to stress in plants, of potential adaptive significance.
    • The solution structure of the complement deregulator FHR5 reveals a compact dimer and provides new insights into CFHR5 nephropathy

      Kadkhodayi-Kholghi, Nilufar; Gor, Jayesh; McDermott, Lindsay C.; Gale, Daniel P.; Perkins, Stephen J.; Bhatt, Jayesh S. (American Society for Biochemistry and Molecular Biology (United States), 2020-09-14)
      The human complement Factor H-related 5 protein (FHR5) antagonizes the main circulating complement regulator Factor H, resulting in the deregulation of complement activation. FHR5 normally contains nine short complement regulator (SCR) domains, but a FHR5 mutant has been identified with a duplicated N-terminal SCR-1/2 domain pair that causes CFHR5 nephropathy. To understand how this duplication causes disease, we characterized the solution structure of native FHR5 by analytical ultracentrifugation and small-angle X-ray scattering. Sedimentation velocity and Xray scattering indicated that FHR5 was dimeric, with a radius of gyration RG of 5.5 ± 0.2 nm and a maximum protein length of 20 nm for its 18 domains. This result indicated that FHR5 was even more compact than the main regulator Factor H which showed an overall length of 26-29 nm for its 20 SCR domains. Atomistic modelling for FHR5 generated a library of 250,000 physically-realistic trial arrangements of SCR domains for scattering curve fits. Only compact domain structures in this library fit well to the scattering data, and these structures readily accommodated the extra SCR-1/2 domain pair present in CFHR5 nephropathy. This model indicated that mutant FHR5 can form oligomers that possess additional binding sites for C3b in FHR5. We conclude that the deregulation of complement regulation by the FHR5 mutant can be rationalized by the enhanced binding of FHR5 oligomers to C3b deposited on host cell surfaces. Our FHR5 structures thus explained key features of the mechanism and pathology of CFHR5 nephropathy.
    • Associated targets of the antioxidant cardioprotection of Ganoderma lucidum in diabetic cardiomyopathy by using open targets platform: a systematic review

      Shaher, Fahmi; Qiu, Hong-Bin; Wang, Shuqiu; Hu, Yu; Wang, Weiqun; Zhang, Yu; Wei, Yao; AL-ward, Hisham; Abdulghani, Mahfoudh A. M.; Alenezi, Sattam Khulaif; et al. (Hindawi, 2020-07-25)
      Even with substantial advances in cardiovascular therapy, the morbidity and mortality rates of diabetic cardiomyopathy (DCM) continually increase. Hence, a feasible therapeutic approach is urgently needed. Objectives. This work is aimed at systemically reviewing literature and addressing cell targets in DCM through the possible cardioprotection of G. lucidum through its antioxidant effects by using the Open Targets Platform (OTP) website. Methods. The OTP website version of 19.11 was accessed in December 2019 to identify the studies in DCM involving G. lucidum. Results. Among the 157 cell targets associated with DCM, the mammalian target of rapamycin (mTOR) was shared by all evidence, drug, and text mining data with 0.08 score association. mTOR also had the highest score association 0.1 with autophagy in DCM. Among the 1731 studies of indexed PubMed articles on G. lucidum published between 1985 and 2019, 33 addressed the antioxidant effects of G. lucidum and its molecular signal pathways involving oxidative stress and therefore were included in the current work. Conclusion. mTOR is one of the targets by DCM and can be inhibited by the antioxidative properties of G. lucidum directly via scavenging radicals and indirectly via modulating mTOR signal pathways such as Wnt signaling pathway, Erk1/2 signaling, and NF-κB pathways.
    • Oral ingestion of bacterially expressed dsrna can silence genes and cause mortality in a highly invasive, tree-killing pest, the emerald ash borer

      Leelesh, Ramya Shanivarsanthe; Rieske, Lynne K.; University of Kentucky; University of Bedfordshire (MDPI, 2020-07-14)
      RNA interference (RNAi) is a naturally occurring process inhibiting gene expression, and recent advances in our understanding of the mechanism have allowed its development as a tool against insect pests. A major challenge for deployment in the field is the development of convenient and efficient methods for production of double stranded RNA (dsRNA). We assessed the potential for deploying bacterially produced dsRNA as a bio-pesticide against an invasive forest pest, the emerald ash borer (EAB). EAB feeds on the cambial tissue of ash trees (Fraxinus spp.), causing rapid death. EAB has killed millions of trees in North America since its discovery in 2002, prompting the need for innovative management strategies. In our study, bacterial expression and synthesis of dsRNA were performed with E. coli strain HT115 using the L4440 expression vector. EAB-specific dsRNAs (shi and hsp) over-expressed in E. coli were toxic to neonate EAB after oral administration, successfully triggering gene silencing and subsequent mortality; however, a non-specific dsRNA control was not included. Our results suggest that ingestion of transformed E. coli expressing dsRNAs can induce an RNAi response in EAB. To our knowledge, this is the first example of an effective RNAi response induced by feeding dsRNA-expressing bacteria in a forest pest.
    • Architecture and self-assembly of Clostridium sporogenes and Clostridium botulinum spore surfaces illustrate a general protective strategy across spore formers

      Janganan, Thamarai K.; Mullin, Nic; Dafis-Sagarmendi, Ainhoa; Brunt, Jason; Tzokov, Svetomir B.; Stringer, Sandra; Moir, Anne; Chaudhuri, Roy R.; Fagan, Robert P.; Hobbs, Jamie K.; et al. (American Society for Microbiology, 2020-07-01)
      Spores, the infectious agents of many Firmicutes, are remarkably resilient cell forms. Even distant relatives can have similar spore architectures although some display unique features; they all incorporate protective proteinaceous envelopes. We previously found that Bacillus spores can achieve these protective properties through extensive disulfide cross-linking of self-assembled arrays of cysteine-rich proteins. We predicted that this could be a mechanism employed by spore formers in general, even those from other genera. Here, we tested this by revealing in nanometer detail how the outer envelope (exosporium) in Clostridium sporogenes (surrogate for C. botulinum group I), and in other clostridial relatives, forms a hexagonally symmetric semipermeable array. A cysteine-rich protein, CsxA, when expressed in Escherichia coli, self-assembles into a highly thermally stable structure identical to that of the native exosporium. Like the exosporium, CsxA arrays require harsh “reducing” conditions for disassembly. We conclude that in vivo, CsxA self-organizes into a highly resilient, disulfide cross-linked array decorated with additional protein appendages enveloping the forespore. This pattern is remarkably similar to that in Bacillus spores, despite a lack of protein homology. In both cases, intracellular disulfide formation is favored by the high lattice symmetry. We have identified cysteine-rich proteins in many distantly related spore formers and propose that they may adopt a similar strategy for intracellular assembly of robust protective structures.
    • Inhibition on JNK mimics silencing of Wnt-11 mediated cellular response in androgen-independent prostate cancer cells

      Arisan, Elif Damla; Rencuzogullari, Ozge; Keskin, Buse; Grant, Guy H.; Uysal-Onganer, Pinar; Gebze Technical University; Istanbul Kultur University; University of Bedfordshire; University of Westminster (MDPI, 2020-06-27)
      Prostate cancer (PCa) is one of the most common cancers among men, and one of the leading causes of cancer death for men. The c-Jun N-terminal kinase (JNK) pathway is required for several cellular functions, such as survival, proliferation, differentiation, and migration. Wnt-11, a member of the Wnt family, has been identified for its upregulation in PCa; however, downstream signalling of Wnt-11 remains to be fully characterized. In this study, we investigated the role of the JNK pathway as a potential downstream factor for Wnt-11 signalling. For this purpose, LNCaP, DU145, and PC-3 PCa cells and normal epithelial PNT1A cells were treated with a specific JNK kinase inhibitor: JNKVIII. Our results showed that JNK inhibition decreased mitochondrial membrane potential and promoted cell death in a cell type-dependent manner. We found that JNK inhibition led to an increase in autophagy and prevented epithelial-mesenchymal transition (EMT) in independently growing androgen cells. JNK inhibition and the silencing of Wnt-11 showed similar responses in DU145 and PC-3 cells and decreased metastasis-related biomarkers, cell migration, and invasion. Overall, our results suggest that JNK signalling plays a significant role in the pathophysiology of PCa by mediating Wnt-11 induced signals. Our data highlights that both the JNK pathway and Wnt-11 could be a useful therapeutic target for the combinatory application of current PCa.
    • On the origin of giant seeds: the macroevolution of the double coconut (Lodoicea maldivica) and its relatives (Borasseae, Arecaceae)

      Bellot, Sidonie; Bayton, Ross P.; Couvreur, Thomas L.P.; Dodsworth, Steven; Eiserhardt, Wolf L.; Guignard, Maite S.; Pritchard, Hugh W.; Roberts, Lucy; Toorop, Peter E.; Baker, William J. (Wiley, 2020-06-16)
      Seed size shapes plant evolution and ecosystems, and may be driven by plant size and architecture, dispersers, habitat and insularity. How these factors influence the evolution of giant seeds is unclear, as are the rate of evolution and the biogeographical consequences of giant seeds. We generated DNA and seed size data for the palm tribe Borasseae (Arecaceae) and its relatives, which show a wide diversity in seed size and include the double coconut (Lodoicea maldivica), the largest seed in the world. We inferred their phylogeny, dispersal history and rates of change in seed size, and evaluated the possible influence of plant size, inflorescence branching, habitat and insularity on these changes. Large seeds were involved in 10 oceanic dispersals. Following theoretical predictions, we found that: taller plants with fewer-branched inflorescences produced larger seeds; seed size tended to evolve faster on islands (except Madagascar); and seeds of shade-loving Borasseae tended to be larger. Plant size and inflorescence branching may constrain seed size in Borasseae and their relatives. The possible roles of insularity, habitat and dispersers are difficult to disentangle. Evolutionary contingencies better explain the gigantism of the double coconut than unusually high rates of seed size increase.