• The ABA-1 allergen of Ascaris lumbricoides: sequence polymorphism, stage and tissue-specific expression, lipid binding function, and protein biophysical properties

      Xia, Y.; Spence, H.J.; Moore, Joyce; Heaney, N.; McDermott, Lindsay C.; Cooper, Alan; Watson, D.G.; Mei, B.; Komuniecki, R.; Kennedy, Malcolm W.; et al. (Cambridge University Press, 2000-02-28)
      The ABA-1 protein of Ascaris lumbricoides (of humans) and Ascaris suum (of pigs) is abundant in the pseudocoelomic fluid of the parasites and also appears to be released by the tissue-parasitic larvae and the adult stages. The genes encoding the polyprotein precursor of ABA-1 (aba-1) were found to be arranged similarly in the two taxa, comprising tandemly repeating units encoding a large polyprotein which is cleaved to yield polypeptides of approximately 15 kDa which fall into 2 distinct classes, types A and B. The polyprotein possibly comprises only 10 units. The aba-1 gene of A. lumbricoides is polymorphic, and the majority of substitutions observed occur in or near predicted loop regions in the encoded proteins. mRNA for ABA-1 is present in infective larvae within the egg, and in all parasitic stages, but was not detectable in unembryonated eggs. ABA-1 mRNA was confined to the gut of adult parasites, and not in body wall or reproductive tissues. Recombinant protein representing a single A-type unit for the A. lumbricoides aba-1 gene was produced and found to bind retinol (Vitamin A) and a range of fatty acids, including the pharmacologically active lipids lysophosphatidic acid, lysoplatelet activating factor, and there was also evidence of binding to leukotrienes. It failed to bind to any of the anthelmintics screened. Differential Scanning Calorimetry showed that the recombinant protein was highly stable, and unfolded in a single transition at 90.4 degrees C. Analysis of the transition indicated that the protein occurs as a dimer and that the dimer dissociates simultaneously with the unfolding of the monomer units.
    • Adapting to extreme environments: can coral reefs adapt to climate change?

      Crabbe, M. James C.; University of Bedfordshire (Portland Press, 2019-03-11)
      Reef-building corals throughout the world have an annual value of tens of billions of dollars, yet they are being degraded at an increasing rate by many anthropogenic and environmental factors. Despite this, some reefs show resilience to such extreme environmental changes. This review shows how techniques in computational modelling, genetics, and transcriptomics are being used to unravel the complexity of coral reef ecosystems, to try and understand if they can adapt to new and extreme environments. Considering the ambitious climate targets of the Paris Agreement to limit global warming to 2°C, with aspirations of even 1.5°C, questions arise on how to achieve this. Geoengineering may be necessary if other avenues fail, although global governance issues need to play a key role. Development of large and effective coral refugia and marine protected areas is necessary if we are not to lose this vital resource for us all.
    • Adaptive changes of glioblastoma cells following exposure to hypoxic (1% oxygen) tumour microenvironment.

      Musah-Eroje, Ahmed; Watson, Sue; University of Nottingham; University of Bedfordshire (MDPI, 2019-04-28)
      Glioblastoma multiforme is the most aggressive and malignant primary brain tumour, with a median survival rate of between 15 to 17 months. Heterogeneous regions occur in glioblastoma as a result of oxygen gradients which ranges from 0.1% to 10% in vivo. Emerging evidence suggests that tumour hypoxia leads to increased aggressiveness and chemo/radio resistance. Yet, few in vitro studies have been performed in hypoxia. Using three glioblastoma cell-lines (U87, U251, and SNB19), the adaptation of glioblastoma cells in a 1% (hypoxia) and 20% (normoxia) oxygen microenvironment on proliferation, metabolism, migration, neurosphere formation, CD133 and VEGF expression was investigated. Compared to cells maintained in normoxia (20% oxygen), glioblastoma cells adapted to 1% oxygen tension by reducing proliferation and enhancing metabolism. Both migratory tendency and neurosphere formation ability were greatly limited. In addition, hypoxic-mediated gene upregulation (CD133 and VEGF) was reversed when cells were removed from the hypoxic environment. Collectively, our results reveal that hypoxia plays a pivotal role in changing the behaviour of glioblastoma cells. We have also shown that genetic modulation can be reversed, supporting the concept of reversibility. Thus, understanding the degree of oxygen gradient in glioblastoma will be crucial in personalising treatment for glioblastoma patients.
    • Anti-epileptic effect of Ganoderma lucidum polysaccharides by inhibition of intracellular calcium accumulation and stimulation of expression of CaMKII a in epileptic hippocampal neurons

      Wang, Shu-Qiu; Li, Xiao-Jie; Qiu, Hong-Bin; Jiang, Zhi-Mei; Simon, Maria; Ma, Xiao-Ru; Liu, Lei; Li, Jun-Xing; Wang, Fang-Fang; Liang, Yan-Feng; et al. (PLOS, 2014-07-10)
      Purpose: To investigate the mechanism of the anti-epileptic effect of Ganoderma lucidum polysaccharides (GLP), the changes of intracellular calcium and CaMK II a expression in a model of epileptic neurons were investigated. Method: Primary hippocampal neurons were divided into: 1) Control group, neurons were cultured with Neurobasal medium, for 3 hours; 2) Model group I: neurons were incubated with Mg2+ free medium for 3 hours; 3) Model group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with the normal medium for a further 3 hours; 4) GLP group I: neurons were incubated with Mg2+ free medium containing GLP (0.375 mg/ml) for 3 hours; 5) GLP group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with a normal culture medium containing GLP for a further 3 hours. The CaMK II a protein expression was assessed by Western-blot. Ca2+ turnover in neurons was assessed using Fluo-3/AM which was added into the replacement medium and Ca2+ turnover was observed under a laser scanning confocal microscope. Results: The CaMK II a expression in the model groups was less than in the control groups, however, in the GLP groups, it was higher than that observed in the model group. Ca2+ fluorescence intensity in GLP group I was significantly lower than that in model group I after 30 seconds, while in GLP group II, it was reduced significantly compared to model group II after 5 minutes. Conclusion: GLP may inhibit calcium overload and promote CaMK II a expression to protect epileptic neurons
    • Antitumor and apoptosis induction effects of paeonol on mice bearing EMT6 breast carcinoma

      Ou, Yetao; Li, Qingwang; Wang, Jianjie; Li, Kun; Zhou, Shaobo; Yanshan University; Northwest A&F University; Jiamusi University; University of Bedfordshire (Korean Society of Applied Pharmacology, 2014-07-31)
      Paeonol is a major phenolic micromolecular component of Moutan cortex Radicis, a traditional Chinese Medicine. It has shown antitumor effects in previous studies; however, the underlying mechanisms remain unknown. This study investigated the mechanism by giving treatments of placebo, cyclophosphamide, paeonol of 150 and 300 mg/kg to 4 groups of mice bearing EMT6 breast cancer. Apoptosis in tumor cells were confirmed by morphology analysis, including hematoxylin, eosin staining and TUNEL staining. The results showed that the weight of EMT6 breast tumor was significantly reduced in the groups treated with both 150 and 300 mg/kg of paeonol. Immunohistochemical and Western blot results showed that the expression of Bcl-2 was down-regulated while the expression of Bax, caspase 8 and caspase 3 was up-regulated respectively. These results suggest that paeonol exhibits antitumor effects and the mechanism of the inhibition is via induction of apoptosis, regulation of Bcl-2 and Bax expression, and activation of caspase 8 and caspase 3.
    • Antitumor effect of salidroside on mice bearing HepA hepatocellular carcinoma

      Song, Hanjun; Wang, Jianjie; Wang, Molin; Dong, Hang; Li, Lijiang; Zhang, Tengyuan; Zhou, Shaobo; Jiamusi University; University of Bedfordshire (2015-08-05)
      Salidroside, a phenylpropanoid glycoside extracted from Rhodiola rosea L., has antiproliferative effects on tumour cells in mice. However it’s antitumor mechanism remains largely unknown. In this study, 4 groups of mice bearing hepatocarcinoma cells were given treatment with vehicle alone, cyclophosphamide (25 mg/kg, i.p.) and salidroside, either 100 or 200 mg/kg (p.o.) for 14 days. The morphology of tumour specimens was analysed by transmission electron microscopy. Apoptotic cells in sections of mouse tumour tissue were analysed using an in situ apoptosis kit. The expression of Bcl-2, Bax and caspase 3 mRNA were examined with RT-PCR. The results showed that the tumour weights in groups 100 or 200 mg/kg/day of salidroside were reduced significantly (45.34 and 52.48% respectively), compared to vehicle groups. Salidroside increased apoptotic cells index, e.g. in 200 mg/kg group, it was four times higher compared to the control group. Even more, treatment with salidroside decreased Bcl-2 mRNA expression and increased Bax and caspase 3 mRNA expressions. These indicated that the antitumor mechanism of salidroside may induce tumour cell apoptosis in mice by triggering the mitochondrial-dependent pathway and activation of caspase 3.
    • Arachidonic acid metabolism in the human placenta: identification of a putative lipoxygenase

      Jadoon, Ayesha; Cunningham, Phil; McDermott, Lindsay C. (Elsevier, 2014-04-08)
      Arachidonic acid (ARA) metabolites maintain pregnancy and control parturition.We generated a network of 77 proteins involved in placental ARA metabolism to identify novel proteins in this pathway. We identified a long pathway within this network which showed that secretory and cytosolic phospholipase A2 proteins act in concert. The functions of all network proteins expressed in the placental decidua were determined by database searches. Thus ARA metabolism was linked to carbohydrate metabolism. One protein, transmembrane protein 62 (TMEM62), expressed in decidua was previously uncharacterized, and was identified as a putative lipoxygenase. TMEM62 may play a role in pregnancy and/or parturition.
    • Arsenite oxidase also functions as an antimonite oxidase

      Wang, Qian; Warelow, Thomas P.; Kang, Yoon-Suk; Romano, Christine; Osborne, Thomas H.; Lehr, Corinne R.; Bothner, Brian; McDermott, Timothy R.; Santini, Joanne M.; Wang, Gejiao; et al. (American Society for Microbiology, 2014-12-29)
      Arsenic and antimony are toxic metalloids and are considered priority environmental pollutants by the U.S. Environmental Protection Agency. Significant advances have been made in understanding microbe-arsenic interactions and how they influence arsenic redox speciation in the environment. However, even the most basic features of how and why a microorganism detects and reacts to antimony remain poorly understood. Previous work with Agrobacterium tumefaciens strain 5A concluded that oxidation of antimonite [Sb(III)] and arsenite [As(III)] required different biochemical pathways. Here, we show with in vivo experiments that a mutation in aioA [encoding the large subunit of As(III) oxidase] reduces the ability to oxidize Sb(III) by approximately one-third relative to the ability of the wild type. Further, in vitro studies with the purified As(III) oxidase from Rhizobium sp. strain NT-26 (AioA shares 94% amino acid sequence identity with AioA of A. tumefaciens) provide direct evidence of Sb(III) oxidation but also show a significantly decreased Vmax compared to that of As(III) oxidation. The aioBA genes encoding As(III) oxidase are induced by As(III) but not by Sb(III), whereas arsR gene expression is induced by both As(III) and Sb(III), suggesting that detection and transcriptional responses for As(III) and Sb(III) differ. While Sb(III) and As(III) are similar with respect to cellular extrusion (ArsB or Acr3) and interaction with ArsR, they differ in the regulatory mechanisms that control the expression of genes encoding the different Ars or Aio activities. In summary, this study documents an enzymatic basis for microbial Sb(III) oxidation, although additional Sb(III) oxidation activity also is apparent in this bacterium.
    • Ascorbyl palmitate/DSPE-PEG nanocarriers for oral iron delivery: preparation, characterisation and in vitro evaluation

      Zariwala, Mohammed Gulrez; Farnaud, Sébastien; Merchant, Zahra; Somavarapu, Satyanarayana; Renshaw, Derek; University of Westminster; University of Bedfordshire; UCL School of Pharmacy (Elsevier, 2014-03-01)
      The objective of this study was to encapsulate iron in nanocarriers formulated with ascorbyl palmitate and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine polyethylene glycol (DSPE-PEG) for oral delivery. Blank and iron (Fe) loaded nanocarriers were prepared by a modified thin film method using ascorbyl palmitate and DSPE-PEG. Surface charge of the nanocarriers was modified by the inclusion of chitosan (CHI) during the formulation process. Blank and iron loaded ascorbyl palmitate/DSPE nanocarriers were visualised by transmission electron microscopy (TEM) and physiochemical characterisations of the nanocarriers carried out to determine the mean particle size and zeta potential. Inclusion of chitosan imparted a net positive charge on the nanocarrier surface and also led to an increase in mean particle size. Iron entrapment in ascorbyl palmitate-Fe and ascorbyl palmitate-CHI-Fe nanocarriers was 67% and 76% respectively, suggesting a beneficial effect of chitosan on nanocarrier Fe entrapment. Iron absorption was estimated by measuring Caco-2 cell ferritin formation using ferrous sulphate as a reference standard. Iron absorption from ascorbyl palmitate-Fe (592.17±21.12 ng/mg cell protein) and ascorbyl palmitate-CHI-Fe (800.12±47.6 ng/mg, cell protein) nanocarriers was 1.35-fold and 1.5-fold higher than that from free ferrous sulphate, respectively (505.74±23.73 ng/mg cell protein) (n=6, p<0.05). This study demonstrates for the first time preparation and characterisation of iron loaded ascorbyl palmitate/DSPE PEG nanocarriers, and that engineering of the nanocarriers with chitosan leads to a significant augmentation of iron absorption.
    • Associations of polyunsaturated fatty acids with residual depression or anxiety in older people with major depression

      Jadoon, Ayesha; Chiu, Chih-Chiang; McDermott, Lindsay C.; Cunningham, Phil; Frangou, Sophia; Chang, Ching-Jui; Sun, I-Wen; Liu, Shen-Ing; Lu, Mong-Liang; Su, Kuan-Pin; et al. (Elsevier, 2012-02-28)
      BACKGROUNDS: Depression in late life often follows a chronic course with residual depressive and anxiety symptoms. Levels of omega-3 polyunsaturated fatty acids (PUFAs) have been found to be depleted in people with major depression in the acute stage. Additionally, lower omega-3 PUFA levels have been suggested to be associated with anxiety. The aim of this study was to investigate whether PUFAs levels (omega-3 or omega-6) are correlated with residual depressive or anxiety symptoms in older people with previous depression. METHODS: Participants aged 60 years or over with previous major depression in remission were enrolled from outpatient psychiatric services of four hospitals. Participants with residual depressive symptoms were defined as the Hamilton Depression Rating Scale (HDRS) scores>5, and those with anxiety were defined as sum of scores for the two anxiety subscale of HDRS≧2. The levels of fatty acids in erythrocyte membranes and in plasma were measured separately by gas chromatography. RESULTS: One hundred and thirty two older people with previous major depression (mean age of 68 years, range 60-86 years) were analyzed. Erythrocyte membrane linoleic acid levels had a curvilinear association with depressive symptoms and anxiety symptoms. Plasma linoleic acid levels were found to have a negative linear relationship with depressive symptoms. No significant associations were found between any omega-3 fatty acid level and depressive or anxiety symptoms. CONCLUSION: Linoleic acid levels may be a possible biomarker for residual depression and anxiety in older people with previous depression. Possible clinical applications need further investigation.
    • ATP-binding cassette transporter VcaM from Vibrio cholerae is dependent on the outer membrane factor family for Its function

      Lu, Wen-Jung; Lin, Hsuan-Ju; Janganan, Thamarai K.; Li, Cheng-Yu; Chin, Wen-Chiang; Bavro, Vassiliy N; Lin, Hong-Ting Victor; National Taiwan Ocean University,; University of Bedfordshire; University of Essex (MDPI, 2018-03-27)
      strains lacking the principal secondary transporter AcrB (Acriflavine resistance protein), as well as cells lacking the outer membrane factor (OMF) TolC (Tolerance to colicins). Consistent with the ATPase function of VcaM we found it to be susceptible to sodium orthovanadate (NaOV), however, we also found a clear dependency of VcaM function on TolC. Inhibitors targeting secondary active transporters had no effects on either VcaM-conferred resistance or Hoechst 33342 accumulation, suggesting that VcaM might be capable of engaging with the TolC-channel without periplasmic mediation by additional transporters. Our findings are indicative of VcaM being capable of a one-step substrate translocation from cytosol to extracellular space utilising the TolC-channel, making it the only multidrug ABC-transporter outside of the MacB-family with demonstrable TolC-dependency.
    • ATP-specificity of succinyl-CoA synthetase from Blastocystis hominis

      Huang, Ji; Nguyen, Vinh H.; Hamblin, Karleigh; Maytum, Robin; van der Giezen, Mark; Fraser, Marie E.; (International Union of Crystallography, 2019-07-08)
      Succinyl‐CoA synthetase (SCS) catalyzes the only step of the tricarboxylic acid cycle that leads to substrate‐level phosphorylation. Some forms of SCS are specific for ADP/ATP or for GDP/GTP, while others can bind all of these nucleotides, generally with different affinities. The theory of `gatekeeper' residues has been proposed to explain the nucleotide‐specificity. Gatekeeper residues lie outside the binding site and create specific electrostatic interactions with incoming nucleotides to determine whether the nucleotides can enter the binding site. To test this theory, the crystal structure of the nucleotide‐binding domain in complex with Mg2+‐ADP was determined, as well as the structures of four proteins with single mutations, K46βE, K114βD, V113βL and L227βF, and one with two mutations, K46βE/K114βD. The crystal structures show that the enzyme is specific for ADP/ATP because of interactions between the nucleotide and the binding site. Nucleotide‐specificity is provided by hydrogen‐bonding interactions between the adenine base and Gln20β, Gly111β and Val113β. The O atom of the side chain of Gln20β interacts with N6 of ADP, while the side‐chain N atom interacts with the carbonyl O atom of Gly111β. It is the different conformations of the backbone at Gln20β, of the side chain of Gln20β and of the linker that make the enzyme ATP‐specific. This linker connects the two subdomains of the ATP‐grasp fold and interacts differently with adenine and guanine bases. The mutant proteins have similar conformations, although the L227βF mutant shows structural changes that disrupt the binding site for the magnesium ion. Although the K46βE/K114βD double mutant of Blastocystis hominis SCS binds GTP better than ATP according to kinetic assays, only the complex with Mg2+‐ADP was obtained.
    • Autoimmunity to the alpha 3 chain of type IV collagen in glomerulonephritis is triggered by 'autoantigen complementarity'

      Reynolds, John; Preston, Gloria A.; Pressler, Barrak M.; Hewins, Peter; Brown, Michael; Roth, Aleeza; Alderman, Elizabeth; Bunch, Donna; Jennette, J. Charles; Cook, H. Terence; et al. (Elsevier, 2015-04-02)
      'Autoantigen complementarity' is a theory proposing that the initiator of an autoimmune response is not necessarily the autoantigen or its molecular mimic, but may instead be a peptide that is 'antisense/complementary' to the autoantigen. We investigated whether such complementary proteins play a role in the immunopathogenesis of autoimmune glomerulonephritis. Experimental autoimmune glomerulonephritis, a model of anti-glomerular basement membrane (GBM) disease, can be induced in Wistar Kyoto (WKY) rats by immunization with the α3 chain of type IV collagen. In this study, WKY rats were immunized with a complementary α3 peptide (c-α3-Gly) comprised of amino acids that 'complement' the well characterized epitope on α3(IV)NC1, pCol(24-38). Within 8 weeks post-immunization, these animals developed cresentic glomerulonephritis, similar to pCol(24-38)-immunized rats, while animals immunized with scrambled peptide were normal. Anti-idiotypic antibodies to epitopes from c-α3-Gly-immunized animals were shown to be specific for α3 protein, binding in a region containing sense pCol(24-38) sequence. Interestingly, anti-complementary α3 antibodies were identified in sera from patients with anti-GBM disease, suggesting a role for 'autoantigen complementarity' in immunopathogenesis of the human disease. This work supports the idea that autoimmune glomerulonephritis can be initiated through an immune response against a peptide that is anti-sense or complementary to the autoantigen. The implications of this discovery may be far reaching, and other autoimmune diseases could be due to responses to these once unsuspected 'complementary' antigens.
    • Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1

      Standing, Ariane S.I.; Malinova, Dessislava; Hong, Ying; Record, Julien; Moulding, Dale; Blundell, Michael P.; Nowak, Karolin; Jones, Hannah; Omoyinmi, Ebun; Gilmour, Kimberly; et al. (Rockefeller University Press, 2016-12-19)
      The importance of actin dynamics in the activation of the inflammasome is becoming increasingly apparent. IL-1β, which is activated by the inflammasome, is known to be central to the pathogenesis of many monogenic autoinflammatory diseases. However, evidence from an autoinflammatory murine model indicates that IL-18, the other cytokine triggered by inflammasome activity, is important in its own right. In this model, autoinflammation was caused by mutation in the actin regulatory gene WDR1 We report a homozygous missense mutation in WDR1 in two siblings causing periodic fevers with immunodeficiency and thrombocytopenia. We found impaired actin dynamics in patient immune cells. Patients had high serum levels of IL-18, without a corresponding increase in IL-18-binding protein or IL-1β, and their cells also secreted more IL-18 but not IL-1β in culture. We found increased caspase-1 cleavage within patient monocytes indicative of increased inflammasome activity. We transfected HEK293T cells with pyrin and wild-type and mutated WDR1 Mutant protein formed aggregates that appeared to accumulate pyrin; this could potentially precipitate inflammasome assembly. We have extended the findings from the mouse model to highlight the importance of WDR1 and actin regulation in the activation of the inflammasome, and in human autoinflammation.
    • Bile UPLC-MS fingerprinting and bile acid fluxes during human liver transplantation

      Legido-Quigley, Cristina; McDermott, Lindsay C.; Vilca-Melendez, Hector; Murphy, Gerard M.; Heaton, Nigel; Lindon, John C.; Nicholson, Jeremy K.; Holmes, Elaine (Wiley, 2011-07-06)
      Bile flow restoration is a crucial step in the recovery process post transplantation of the liver. Here, metabolic trajectories based on changes in bile secretion – a known marker of functionality – have been utilised as an approach for discovering bile fluxes during transplantation. A total of ten liver transplants were monitored and from these 68 bile samples from both donors and recipients were collected and analysed using ultra‐performance LC‐MS in combination with multivariate statistical analysis. Based on the principal component scores constructed from the total bile fingerprint, differentiation of the bile acid concentrations before and after transplantation was detected. A trend was also observed, by constructing metabolic trajectories, whereby the post‐transplant profiles approached the position of pre‐transplant profiles within 30–60 min of the restoration of bile secretion function. The ten major conjugated bile acid salts were measured and a significant increase in concentrations of taurocholic acid and taurochenodeoxycholic acid were seen after transplantation. In addition, the ratios of secondary bile acids detected in gall bladder and hepatic bile were measured before and after transplantation. This study suggests that bile acid ratios in the donor liver at the pre‐transplant and post‐transplant stage may be important and that profiling of secreted bile after transplantation may aid clinical assessment and progress post‐transplantation.
    • The cAMP pathway is important for controlling the morphological switch to the pathogenic yeast form of Paracoccidioides brasiliensis.

      Chen, Daliang; Janganan, Thamarai K.; Chen, Gongyou; Marques, Everaldo R.; Kress, Marcia R.; Goldman, Gustavo H.; Walmsley, Adrian R.; Borges-Walmsley, Maria Ines; University of Durham; Universidade de Sao Paulo (Wiley, 2007-08-30)
      Paracoccidioides brasiliensis is a human pathogenic fungus that switches from a saprobic mycelium to a pathogenic yeast. Consistent with the morphological transition being regulated by the cAMP-signalling pathway, there is an increase in cellular cAMP levels both transiently at the onset (< 24 h) and progressively in the later stages (> 120 h) of the transition to the yeast form, and this transition can be modulated by exogenous cAMP. We have cloned the cyr1 gene encoding adenylate cyclase (AC) and established that its transcript levels correlate with cAMP levels. In addition, we have cloned the genes encoding three Galpha (Gpa1-3), Gbeta (Gpb1) and Ggamma (Gpg1) G proteins. Gpa1 and Gpb1 interact with one another and the N-terminus of AC, but neither Gpa2 nor Gpa3 interacted with Gpb1 or AC. The interaction of Gpa1 with Gpb1 was blocked by GTP, but its interaction with AC was independent of bound nucleotide. The transcript levels for gpa1, gpb1 and gpg1 were similar in mycelium, but there was a transient excess of gpb1 during the transition, and an excess of gpa1 in yeast. We have interpreted our findings in terms of a novel signalling mechanism in which the activity of AC is differentially modulated by Gpa1 and Gpb1 to maintain the signal over the 10 days needed for the morphological switch.
    • Cellular mechanisms governing glucose-dependent insulinotropic polypeptide secretion.

      Reimann, Frank; Diakogiannaki, Eleftheria; Moss, Catherine E.; Gribble, Fiona M.; Wellcome Trust; University of Cambridge (Elsevier, 2020-11-19)
      Glucose-dependent insulinotropic polypeptide (GIP) is a gut hormone secreted from the upper small intestine, which plays an important physiological role in the control of glucose metabolism through its incretin action to enhance glucose-dependent insulin secretion. GIP has also been implicated in postprandial lipid homeostasis. GIP is secreted from enteroendocrine K-cells residing in the intestinal epithelium. K-cells sense a variety of components found in the gut lumen following food consumption, resulting in an increase in plasma GIP signal dependent on the nature and quantity of ingested nutrients. We review the evidence for an important role of sodium-coupled glucose uptake through SGLT1 for carbohydrate sensing, of free-fatty acid receptors FFAR1/FFAR4 and the monoacyl-glycerol sensing receptor GPR119 for lipid detection, of the calcium-sensing receptor CASR and GPR142 for protein sensing, and additional modulation by neurotransmitters such as somatostatin and galanin. These pathways have been identified through combinations of in vivo, in vitro and molecular approaches.
    • Characterisation of hepcidin response to holotransferrin treatment in CHO TRVb-1 cells

      Mehta, Kosha; Greenwell, Pamela; Renshaw, Derek; Busbridge, Mark; Garcia, Mitla; Farnaud, Sébastien; Patel, Vinood B.; University of Westminster; Coventry University; Imperial College Healthcare NHS Trust; et al. (Elsevier, 2015-08-28)
      Iron overload coupled with low hepcidin levels are characteristics of hereditary haemochromatosis. To understand the role of transferrin receptor (TFR) and intracellular iron in hepcidin secretion, Chinese hamster ovary transferrin receptor variant (CHO TRVb-1) cells were used that express iron-response-element-depleted human TFRC mRNA (TFRC∆IRE). Results showed that CHO TRVb-1 cells expressed higher basal levels of cell-surface TFR1 than HepG2 cells (2.2-fold; p < 0.01) and following 5 g/L holotransferrin treatment maintained constitutive over-expression at 24h and 48 h, contrasting the HepG2 cells where the receptor levels significantly declined. Despite this, the intracellular iron content was neither higher than HepG2 cells nor increased over time under basal or holotransferrin-treated conditions. Interestingly, hepcidin secretion in CHO TRVb-1 cells exceeded basal levels at all time-points (p < 0.02) and matched levels in HepG2 cells following treatment. While TFRC mRNA expression showed expected elevation (2h, p < 0.03; 4h; p < 0.05), slc40a1 mRNA expression was also elevated (2 h, p < 0.05; 4 h, p < 0.03), unlike the HepG2 cells. In conclusion, the CHO TRVb-1 cells prevented cellular iron-overload by elevating slc40a1 expression, thereby highlighting its significance in the absence of iron-regulated TFRC mRNA. Furthermore, hepcidin response to holotransferrin treatment was similar to HepG2 cells and resembled the human physiological response.
    • Characterization of a two-component signal transduction system that controls arsenite oxidation in the chemolithoautotroph NT-26

      Sardiwal, Sunita; Santini, Joanne M.; Osborne, Thomas H.; Djordjevic, Snezana; University College London (Wiley, 2010-10-07)
      NT-26 is a chemolithoautotrophic arsenite oxidizer. Understanding the mechanisms of arsenite signalling, tolerance and oxidation by NT-26 will have significant implications for its use in bioremediation and arsenite sensing. We have identified the histidine kinase (AroS) and the cognate response regulator (AroR) involved in the arsenite-dependent transcriptional regulation of the arsenite oxidase aroBA operon. AroS contains a single periplasmic sensory domain that is linked through transmembrane helices to the HAMP domain that transmits the signal to the kinase core of the protein. AroR belongs to a family of AAA+ transcription regulators that interact with DNA through a helix-turn-helix domain. The presence of the AAA+ domain as well as the RNA polymerase σ(54) -interaction sequence motif suggests that this protein regulates transcription through interaction with RNA polymerase in a σ(54) -dependent fashion. The kinase core of AroS and the receiver domain of AroR were heterologously expressed and purified and their autophosphorylation and transphosphorylation activities were confirmed. Using site-directed mutagenesis, we have identified the phosphorylation sites on both proteins. Mutational analysis in NT-26 confirmed that both proteins are essential for arsenite oxidation and the AroS mutant affected growth with arsenite, also implicating it in the regulation of arsenite tolerance. Lastly, arsenite sensing does not appear to involve thiol chemistry.
    • Characterization of hepcidin response to holotransferrin in novel recombinant TfR1 HepG2 cells

      Mehta, Kosha; Busbridge, Mark; Renshaw, Derek; Evans, Robert W.; Farnaud, Sébastien; Patel, Vinood B.; University of Westminster; Imperial College Healthcare NHS Trust; Coventry University; Brunel University; et al. (Elsevier, 2016-06-30)
      Hepcidin is the key regulator of systemic iron homeostasis. The iron-sensing mechanisms and the role of intracellular iron in modulating hepatic hepcidin secretion are unclear. Therefore, we created a novel cell line, recombinant-TfR1 HepG2, expressing iron-response-element-independent TFRC mRNA to promote cellular iron-overload and examined the effect of excess holotransferrin (5g/L) on cell-surface TfR1, iron content, hepcidin secretion and mRNA expressions of TFRC, HAMP, SLC40A1, HFE and TFR2. Results showed that the recombinant cells exceeded levels of cell-surface TfR1 in wild-type cells under basal (2.8-fold; p<0.03) and holotransferrin-supplemented conditions for 24h and 48h (4.4- and 7.5-fold, respectively; p<0.01). Also, these cells showed higher intracellular iron content than wild-type cells under basal (3-fold; p<0.03) and holotransferrin-supplemented conditions (6.6-fold at 4h; p<0.01). However, hepcidin secretion was not higher than wild-type cells. Moreover, holotransferrin treatment to recombinant cells did not elevate HAMP responses compared to untreated or wild-type cells. In conclusion, increased intracellular iron content in recombinant cells did not increase hepcidin responses compared to wild-type cells, resembling hemochromatosis. Furthermore, TFR2 expression altered within 4h of treatment, while HFE expression altered later at 24h and 48h, suggesting that TFR2 may function prior to HFE in HAMP regulation.