• Crystallographic studies of ligand binding by Zn-alpha(2)-glycoprotein

      Delker, Silvia L.; West, Anthony P.; McDermott, Lindsay C.; Kennedy, Malcolm W.; Bjorkman, Pamela J.; California Institute of Technology; University of Glasgow (Elsevier, 2004-05-19)
      Zn-alpha2-glycoprotein (ZAG) is a 41 kDa soluble protein that is present in most bodily fluids. The previously reported 2.8 A crystal structure of ZAG isolated from human serum demonstrated the structural similarity between ZAG and class I major histocompatibility complex (MHC) molecules and revealed a non-peptidic ligand in the ZAG counterpart of the MHC peptide-binding groove. Here we present crystallographic studies to explore further the nature of the non-peptidic ligand in the ZAG groove. Comparison of the structures of several forms of recombinant ZAG, including a 1.95 A structure derived from ZAG expressed in insect cells, suggests that the non-peptidic ligand in the current structures and in the structure of serum ZAG is a polyethylene glycol (PEG), which is present in the crystallization conditions used. Further support for PEG binding in the ZAG groove is provided by the finding that PEG displaces a fluorophore-tagged fatty acid from the ZAG binding site. From these results we hypothesize that our purified forms of ZAG do not contain a bound endogenous ligand, but that the ZAG groove is capable of binding hydrophobic molecules, which may relate to its function.
    • Zn-alpha2-glycoprotein, an MHC class I-related glycoprotein regulator of adipose tissues: modification or abrogation of ligand binding by site-directed mutagenesis

      McDermott, Lindsay C.; Freel, June A.; West, Anthony P.; Bjorkman, Pamela J.; Kennedy, Malcolm W.; University of Glasgow; California Institute of Technology (American Chemical Society, 2006-01-31)
      Zn-alpha(2)-glycoprotein (ZAG) is a soluble lipid-mobilizing factor associated with cancer cachexia and is a novel adipokine. Its X-ray crystal structure reveals a poly(ethylene glycol) molecule, presumably substituting for a higher affinity natural ligand, occupying an apolar groove between its alpha(1) and alpha(2) domain helices that corresponds to the peptide binding groove in class I MHC proteins. We previously provided evidence that the groove is a binding site for hydrophobic ligands that may relate to the protein's signaling function and that the natural ligands are probably (polyunsaturated) fatty acid-like. Using fluorescence-based binding assays and site-directed mutagenesis, we now demonstrate formally that the groove is indeed the binding site for hydrophobic ligands. We also identify amino acid positions that are involved in ligand binding and those that control the shape and exposure to solvent of the binding site itself. Some of the mutants showed minimal effects on their binding potential, one showed enhanced binding, and several were completely nonbinding. Particularly notable is Arg-73, which projects into one end of the binding groove and is the sole charged amino acid adjacent to the ligand. Replacing this amino acid with alanine abolished ligand binding and closed the groove to solvent. Arg-73 may therefore have an unexpected dual role in binding site access and anchor for an amphiphilic ligand. These data add weight to the distinctiveness of ZAG among MHC class I-like proteins in addition to providing defined binding-altered mutants for cellular signaling studies and potential medical applications.