• Nance-Horan Syndrome-like 1 protein negatively regulates Scar/WAVE-Arp2/3 activity and inhibits lamellipodia stability and cell migration

      Law, Ah-Lai; Jalal, Shamsinar; Pallett, Tommy; Mosis, Fuad; Guni, Ahmad; Brayford, Simon; Yolland, Lawrence; Marcotti, Stefania; Levitt, James A.; Poland, Simon P.; et al. (Nature Research, 2021-09-28)
      Cell migration is important for development and its aberrant regulation contributes to many diseases. The Scar/WAVE complex is essential for Arp2/3 mediated lamellipodia formation during mesenchymal cell migration and several coinciding signals activate it. However, so far, no direct negative regulators are known. Here we identify Nance-Horan Syndrome-like 1 protein (NHSL1) as a direct binding partner of the Scar/WAVE complex, which co-localise at protruding lamellipodia. This interaction is mediated by the Abi SH3 domain and two binding sites in NHSL1. Furthermore, active Rac binds to NHSL1 at two regions that mediate leading edge targeting of NHSL1. Surprisingly, NHSL1 inhibits cell migration through its interaction with the Scar/WAVE complex. Mechanistically, NHSL1 may reduce cell migration efficiency by impeding Arp2/3 activity, as measured in cells using a Arp2/3 FRET-FLIM biosensor, resulting in reduced F-actin density of lamellipodia, and consequently impairing the stability of lamellipodia protrusions.
    • Purification and identification of novel xanthine oxidase inhibitory peptides derived from round scad (Decapterus maruadsi) protein hydrolysates

      Hu, Xiao; Zhou, Ya; Zhou, Shaobo; Chen, Shengjun; Wu, Yanyan; Li, Laihao; Yang, Xianqing; Chinese Academy of Fishery Sciences; Jiangsu Ocean University; Shanghai Ocean University; et al. (MDPI, 2021-09-24)
      The objective of the present study was to investigate the xanthine oxidase (XO) inhibitory effects of peptides purified and identified from round scad (Decapterus maruadsi) hydrolysates (RSHs). In this study, RSHs were obtained by using three proteases (neutrase, protamex and alcalase). Among them, the RSHs of 6-h hydrolysis by neutrase displayed the strongest XO inhibitory activity and had an abundance of small peptides (<500 Da). Four novel peptides were purified by immobilized metal affinity chromatography and identified by nano-high-performance liquid chromatography mass/mass spectrometry. Their amino acid sequences were KGFP (447.53 Da), FPSV (448.51 Da), FPFP (506.59 Da) and WPDGR (629.66 Da), respectively. Then the peptides were synthesized to evaluate their XO inhibitory activity. The results indicated that the peptides of both FPSV (5 mM) and FPFP (5 mM) exhibited higher XO inhibitory activity (22.61 +- 1.81% and 20.09 +- 2.41% respectively). Fluorescence spectra assay demonstrated that the fluorescence quenching mechanism of XO by these inhibitors (FPSV and FPFP) was a static quenching procedure. The study of inhibition kinetics suggested that the inhibition of both FPSV and FPFP was reversible, and the type of their inhibition was a mixed one. Molecular docking revealed the importance of π-π stacking between Phe residue (contained in peptides) and Phe914 (contained in the XO) in the XO inhibitory activity of the peptides.
    • ABL1 and Cofilin1 promote T-cell acute lymphoblastic leukemia cell migration

      Luo, Jixian; Zheng, Huiguang; Wang, Sen; Li, Dingyun; Ma, Wenli; Wang, Lan; Crabbe, M. James C. (Oxford University Press, 2021-09-11)
      The fusion gene of ABL1 is closely related to tumor proliferation, invasion, and migration. It has been reported recently that ABL1 itself is required for T-cell acute lymphoblastic leukemia (T-ALL) cell migration induced by CXCL12. Further experiments revealed that ABL1 inhibitor Nilotinib inhibited leukemia cell migration induced by CXCL12, indicating the possible application of Nilotinib in T-ALL leukemia treatment. However, the interacting proteins of ABL1 and the specific mechanisms of their involvement in this process need further investigation. In the present study, ABL1 interacting proteins were characterized and their roles in the process of leukemia cell migration induced by CXCL12 were investigated. Co-immunoprecipitation in combination with mass spectrometry analysis identified 333 proteins that interact with ABL1, including Cofilin1. Gene ontology analysis revealed that many of them were enriched in the intracellular organelle or cytoplasm, including nucleic acid binding components, transfectors, or co-transfectors. Kyoto Encyclopedia of Genes and Genomes analysis showed that the top three enriched pathways were translation, glycan biosynthesis, and metabolism, together with human diseases. ABL1 and Cofilin1 were in the same complex. Cofilin1 binds the SH3 domain of ABL1 directly; however, ABL1 is not required for the phosphorylation of Cofilin1. Molecular docking analysis shows that ABL1 interacts with Cofilin1 mainly through hydrogen bonds and ionic interaction between amino acid residues. The mobility of leukemic cells was significantly decreased by Cofilin1 siRNA. These results demonstrate that Cofilin1 is a novel ABL1 binding partner. Furthermore, Cofilin1 participates in the migration of leukemia cells induced by CXCL12. These data indicate that ABL1 and Cofilin1 are possible targets for T-ALL treatment.
    • A nuclear phylogenomic study of the angiosperm order Myrtales, exploring the potential and limitations of the universal Angiosperms353 probe set

      Maurin, Olivier; Anest, Artemis; Bellot, Sidonie; Biffin, Edward; Brewer, Grace E.; Charles-Dominique, Tristan; Cowan, Robyn S.; Dodsworth, Steven; Epitawalage, Niroshini; Gallego, Berta; et al. (Wiley, 2021-07-31)
      To further advance the understanding of the species-rich, economically and ecologically important angiosperm order Myrtales in the rosid clade, comprising nine families, approximately 400 genera and almost 14,000 species occurring on all continents (except Antarctica), we tested the Angiosperms353 probe kit. We combined high-throughput sequencing and target enrichment with the Angiosperms353 probe kit to evaluate a sample of 485 species across 305 genera (76% of all genera in the order). Results provide the most comprehensive phylogenetic hypothesis for the order to date. Relationships at all ranks, such as the relationship of the early-diverging families, often reflect previous studies, but gene conflict is evident, and relationships previously found to be uncertain often remain so. Technical considerations for processing HTS data are also discussed. High-throughput sequencing and the Angiosperms353 probe kit are powerful tools for phylogenomic analysis, but better understanding of the genetic data available is required to identify genes and gene trees that account for likely incomplete lineage sorting and/or hybridization events.
    • Exploring Angiosperms353: developing and applying a universal toolkit for flowering plant phylogenomics

      McDonnell, Angela J.; Baker, William J.; Dodsworth, Steven; Forest, Felix; Graham, Sean W.; Johnson, Matthew G.; Pokorny, Lisa; Tate, Jennifer; Wickett, Norman J.; Wicke, Susann; et al. (Wiley, 2021-07-26)
      Special Issue Introduction. Target enrichment represents a useful, cost-effective method for researchers working on the phylogenomics of non-model organisms (e.g., Cronn et al., 2012; Hale et al., 2020). The ability to sequence a customizable predefined genomic subset for several dozens or even hundreds of taxa allows in-depth analyses and the testing of phylogenetic hypotheses in ways that were not previously possible (reviewed in McKain et al., 2018). The most popular methods for targeted sequencing of genomic loci in phylogenomics include (long-)amplicon sequencing (Rothfels et al., 2017) and hybridization capture (Mandel et al., 2014; Weitemier et al., 2014). Targeted amplicon sequencing is based on single-fragment PCR amplification or by using multiplexing methods such as a microfluidic PCR-based amplification of multiple pre-selected genomic regions (e.g., Zhang and Ozdemir, 2009; Ho et al., 2014), which can then be pooled and sequenced. Massively parallel amplicon sequencing was first used in medical diagnostics (Turner et al., 2009) and was later applied to metazoan phylogenetics (Bybee et al., 2011; O’Neill et al., 2013). Microfluidic PCR and long-amplicon sequencing were subsequently applied in plant systematics (Uribe-Convers et al., 2014, 2016; Gostel et al., 2015). Amplicon-based methods can be time consuming as they require careful optimization and validation of primers. These methods are also susceptible to many of the common problems in PCR (such as nonspecific products, inability to amplify large loci in their entirety, or simply no products). Recently, amplicon approaches have been largely supplanted by hybridization-based targeted enrichment, which allows for relatively rapid probe design with reference to a few related transcriptomes or genomes, and allows simultaneous and efficient recovery of many hundreds of genes.
    • Genomic analysis of field pennycress (Thlaspi arvense) provides insights into mechanisms of adaptation to high elevation

      Geng, Yu-peng; Guan, Yabin; Qiong, La; Lu, Shugang; An, Miao; Crabbe, M. James C.; Qi, Ji.; Zhao, Fangqing; Qiao, Qin; Zhang, Ti-Cao; et al. (Springer Nature, 2021-07-22)
      Background: Understanding how organisms evolve and adapt to extreme habitats is of crucial importance in evolutionary ecology. Altitude gradients are an important determinant of the distribution pattern and range of organisms due to distinct climate conditions at different altitudes. High-altitude regions often provide extreme environments including low temperature and oxygen concentration, poor soil, and strong levels of ultraviolet radiation, leading to very few plant species being able to populate elevation ranges greater than 4000 m. Field pennycress (Thlaspi arvense) is a valuable oilseed crop and emerging model plant distributed across an elevation range of nearly 4500 m. Here, we generate an improved genome assembly to understand how this species adapts to such different environments. Results: We sequenced and assembled de novo the chromosome-level pennycress genome of 527.3 Mb encoding 31,596 genes. Phylogenomic analyses based on 2495 single-copy genes revealed that pennycress is closely related to Eutrema salsugineum (estimated divergence 14.32–18.58 Mya), and both species form a sister clade to Schrenkiella parvula and genus Brassica. Field pennycress contains the highest percentage (70.19%) of transposable elements in all reported genomes of Brassicaceae, with the retrotransposon proliferation in the Middle Pleistocene being likely responsible for the expansion of genome size. Moreover, our analysis of 40 field pennycress samples in two highand two low-elevation populations detected 1,256,971 high-quality single nucleotide polymorphisms. Using three complementary selection tests, we detected 130 candidate naturally selected genes in the Qinghai-Tibet Plateau (QTP) populations, some of which are involved in DNA repair and the ubiquitin system and potential candidates involved in high-altitude adaptation. Notably, we detected a single base mutation causing loss-of-function of the FLOWERING LOCUS C protein, responsible for the transition to early flowering in high-elevation populations. Conclusions: Our results provide a genome-wide perspective of how plants adapt to distinct environmental conditions across extreme elevation differences and the potential for further follow-up research with extensive data from additional populations and species.
    • Exploring Angiosperms353: an open, community toolkit for collaborative phylogenomic research on flowering plants

      Baker, William J.; Dodsworth, Steven; Forest, Felix; Graham, Sean W.; Johnson, Matthew G.; McDonnell, Angela J.; Pokorny, Lisa; Tate, Jennifer; Wicke, Susann; Wickett, Norman J.; et al. (Wiley, 2021-07-22)
      The unveiling of the angiosperm (flowering plant) tree of life over the past three decades has been one of the great success stories of modern plant biology. Flowering plants underpin most terrestrial biomes: they fix vast amounts of terrestrial carbon, in turn producing a substantial fraction of planetary oxygen, and drive major biogeochemical cycles. The bulk of human calories are derived either directly (crops) or indirectly (fodder) from angiosperms, as are many medicines, fuel, dyes, beverages, timber, fibers, and other materials. Countless indispensable and mundane items that impact human existence find their origins in flowering plants, and without them, life would be decidedly drearier—imagine a world without herbs, spices, or garden flowers, for example. In this context, the importance of a comprehensive understanding of the angiosperm tree of life cannot be overstated. The tree of life is the fundamental, biological roadmap to the evolution and properties of plants (e.g., Wong et al., 2020). For evolutionary biologists, phylogenies allow us to better understand the spectacular rise of the flowering plants to dominance over the past 140 million or so years (e.g., Lutzoni et al., 2018; Ramírez-Barahona et al., 2020). Information about angiosperm phylogenetic relationships also underpins modern angiosperm classification (e.g., APG IV, 2016), and helps us to better understand species origins and boundaries (e.g., Fazekas et al., 2009). Today, tree of life research is undergoing a renaissance due to the development of powerful, new phylogenomic methods (Dodsworth et al., 2019). In this special issue of the American Journal of Botany, together with a companion issue of Applications in Plant Sciences, we gather a set of papers that focus on a new, common phylogenomic toolkit, the Angiosperms353 probe set (Johnson et al., 2019), and illustrate its potential for evolutionary synthesis by promoting open collaboration across our community.
    • Management of environmental streaming data to optimize Arctic shipping routes.

      Zhang, Zhihua; Crabbe, M. James C.; University of Bedfordshire; Shandong University (Springer Nature, 2021-07-20)
      Dynamic accurate predictions of Arctic sea ice, ocean, atmosphere, and ecosystem are necessary for safe and efficient Arctic maritime transportation; however a related technical roadmap has not yet been established. In this paper, we propose a management system for trans-Arctic maritime transportation supported by near real-time streaming data from air-space-ground-sea integrated monitoring networks and high spatio-temporal sea ice modeling. As the core algorithm of integrated monitoring networks, a long short-term memory (LSTM) neural network is embedded to improve Arctic sea ice mapping algorithms.Since the LSTM is localized in time and space, it can make full use of streaming data characteristics. The sea ice–related parameters from satellite remote sensing raw data are used as the input of the LSTM, while streaming data from shipborne radar networks and/or buoy measurements are used as training datasets to enhance the accuracy and resolution of environmental streaming data from outputs of LSTM. Due to large size of streaming data, the proposed management system of trans-Arctic shipping should be built on a cloud distribution platform using existing wireless communications networks among vessels and ports. Our management system will be used by the ongoing European Commission Horizon 2020 Programme “ePIcenter.”
    • Genetic modifications of metallothionein enhance the tolerance and bioaccumulation of heavy metals in Escherichia coli

      Li, Xuefen; Ren, Zhumei; Crabbe, M. James C.; Wang, Lan; Ma, Wenli; Shanxi University; University of Oxford; University of Bedfordshire (Elsevier, 2021-07-13)
      Metallothioneins (MTs) are low molecular weight cysteine-rich proteins that bind to metals. Owing to their high cysteine (Cys) content, MTs are effective mediators of heavy metal detoxification. To enhance the heavy metal binding ability of MT from the freshwater crab Sinopotamon henanense (ShMT), sequence-based multiple sequence alignment (MSA) and structure-based molecular docking simulation (MDS) were conducted in order to identify amino acid residues that could be mutated to bolster such metal-binding activity. Site-directed mutagenesis was then used to modify the primary structure of ShMT, and the recombinant proteins were further enhanced using the SUMO fusion expression system to yield SUMO-ShMT1, SUMO-ShMT2, and SUMO-ShMT3 harboring one-, two-, and three- point mutations, respectively. The resultant modified proteins were primarily expressed in a soluble form and exhibited the ability to readily bind to heavy metals. Importantly, these modified proteins exhibited significantly enhanced heavy metal binding capacities, and they improved Cd2+, Cu2+ and Zn2+ tolerance and bioaccumulation in Escherichia coli (E. coli) in a manner dependent upon the number of introduced point mutations (SUMO-ShMT3 > SUMO-ShMT2 > SUMO-ShMT1 > SUMO-ShMT > control). Indeed, E. coli cells harboring the pET28a-SUMO-ShMT3 expression vector exhibited maximal Cd2+, Cu2+, and Zn2+ bioaccumulation that was increased by 1.86 ± 0.02-, 1.71 ± 0.03-, and 2.13 ± 0.02-fold relative to that in E. coli harboring the pET28a-SUMO-ShMT vector. The present study offers a basis for the preparation of genetically engineered bacteria that are better able to bioaccumulate and tolerate heavy metals, thus providing a foundation for biological heavy metal water pollution treatment.
    • Repeated parallel losses of inflexed stamens in Moraceae: phylogenomics and generic revision of the tribe Moreae and the reinstatement of the tribe Olmedieae (Moraceae)

      Gardner, Elliot M.; Garner, Mira; Cowan, Robyn S.; Dodsworth, Steven; Epitawalage, Niroshini; Arifiani, Deby; Baker, William J.; Forest, Felix; Maurin, Olivier; Zerega, Nyree JC; et al. (Wiley, 2021-07-06)
      We present a densely sampled phylogenomic study of the mulberry tribe (Moreae, Moraceae), an economically important clade with a global distribution, revealing multiple losses of inflexed stamens, a character traditionally used to circumscribe Moreae. Inflexed stamens facilitate ballistic pollen release and are associated with wind pollination, and the results presented here suggest that losses of this character state may have evolved repeatedly in Moraceae. Neither Moreae nor several of its major genera (Morus, Streblus, Trophis) were found to be monophyletic. A revised system for a monophyletic Moreae is presented, including the reinstatement of the genera Ampalis, Maillardia, Taxotrophis, and Paratrophis, and the recognition of the new genus Afromorus. Pseudostreblus is reinstated and transferred to the Parartocarpeae, and Sloetiopsis is reinstated and transferred to the Dorstenieae. The tribe Olmedieae is reinstated, replacing the Castilleae, owing to the reinstatement of the type Olmedia and its exclusion from Moreae. Streblus s.str. is excluded from Moreae and transferred to the Olmedieae, which is characterized primarily by involucrate inflorescences without regard to stamen position. Nine new combinations are made.
    • Evaluation of genetic diversity and population structure of Fragaria nilgerrensis using EST-SSR markers

      Liu, Jie; Zhang, Yichen; Diao, Xia; Yu, Kun; Dai, Xiongwei; Qu, Peng; Crabbe, M. James C.; Zhang, Ti-Cao; Qiao, Qin; Yunnan University; et al. (Elsevier, 2021-06-25)
      Fragaria nilgerrensis is a diploid wild strawberry widely distributed in Southwest China. Its white color and “peach-like” fragrance of fruits are valuable characters for the genetic improvement of cultivated strawberry plants. Its strong biotic and abiotic resistance and tolerance also enable it to survive in different habitats in the field. In this study, we evaluated the level of genetic variation within and between 16 populations with 169 individuals of F. nilgerrensis using 16 newly developed EST-SSR (expressed sequence tag-simple sequence repeats) markers. The results show that the genetic diversity of this species was high, based on Nei’s genetic diversity (0.26) and polymorphic loci (0.41), although it is self-compatible and has clonal propagation. Significant genetic differentiation among populations was also detected by AMOVA analysis (Fst = 0.34), which could be indicative of little gene flow (Nm = 0.43) in F. nilgerrensis. The phylogenetic tree indicates that most of individuals from the same population have clustered together. These populations were not grouped based on the geographical distance, consistent with the Mantel test result (R2 = 0.0063, P > 0.05). All the populations were assigned into two ancestral groups, with some individuals admixed, suggesting ancestral gene flow had occurred between these two groups. Our developed EST-SSR markers as well as the genetic diversity and population structure analysis of F. nilgerrensis are important for genetic improvement in the breeding process. Moreover, the populations that contain high genetic diversity would be a priority for collection and conservation.
    • Resolving species boundaries in a recent radiation with the Angiosperms353 probe set: the Lomatium packardiae/L. anomalum clade of the L. triternatum (Apiaceae) complex

      Ottenlips, Michael V.; Mansfield, Donald H.; Buerki, Sven; Feist, Mary Ann E.; Downie, Stephen R.; Dodsworth, Steven; Forest, Felix; Plunkett, Gregory M.; Smith, James F.; Boise State University; et al. (Wiley, 2021-06-08)
      Speciation not associated with morphological shifts is challenging to detect unless molecular data are employed. Using Sanger-sequencing approaches, the Lomatium packardiae/L. anomalum subcomplex within the larger Lomatium triternatum complex could not be resolved. Therefore, we attempt to resolve these boundaries here. The Angiosperms353 probe set was employed to resolve the ambiguity within Lomatium triternatum species complex using 48 accessions assigned to L. packardiae, L. anomalum, or L. triternatum. In addition to exon data, 54 nuclear introns were extracted and were complete for all samples. Three approaches were used to estimate evolutionary relationships and define species boundaries: STACEY, a Bayesian coalescent-based species tree analysis that takes incomplete lineage sorting into account; ASTRAL-III, another coalescent-based species tree analysis; and a concatenated approach using MrBayes. Climatic factors, morphological characters, and soil variables were measured and analyzed to provide additional support for recovered groups. The STACEY analysis recovered three major clades and seven subclades, all of which are geographically structured, and some correspond to previously named taxa. No other analysis had full agreement between recovered clades and other parameters. Climatic niche and leaflet width and length provide some predictive ability for the major clades. The results suggest that these groups are in the process of incipient speciation and incomplete lineage sorting has been a major barrier to resolving boundaries within this lineage previously. These results are hypothesized through sequencing of multiple loci and analyzing data using coalescent-based processes.
    • Aiming off the target: recycling target capture sequencing reads for investigating repetitive DNA

      Costa, Lucas; Marques, André; Buddenhagen, Chris; Thomas, William Wayt; Huettel, Bruno; Schubert, Veit; Dodsworth, Steven; Houben, Andreas; Souza, Gustavo; Pedrosa-Harand, Andrea (Oxford University Press, 2021-05-29)
      With the advance of high-throughput sequencing (HTS), reduced-representation methods such as target capture sequencing (TCS) emerged as cost-efficient ways of gathering genomic information, particularly from coding regions. As the off-target reads from such sequencing are expected to be similar to genome skimming (GS), we assessed the quality of repeat characterization in plant genomes using this data. Repeat composition obtained from TCS datasets of five Rhynchospora (Cyperaceae) species were compared with GS data from the same taxa. In addition, a FISH probe was designed based on the most abundant satellite found in the TCS dataset of Rhynchospora cephalotes. Finally, repeat-based phylogenies of the five Rhynchospora species were constructed based on the GS and TCS dataset and the topologies were compared with a gene-alignment based phylogenetic tree. All the major repetitive DNA families were identified in TCS, including repeats that showed abundances as low as 0.01% in the GS data. Rank correlation between GS and TCS repeat abundances were moderately high (r = 0.58-0.85), increasing after filtering out the targeted loci from the raw TCS reads (r = 0.66-0.92). Repeat data obtained by TCS was also reliable to develop a cytogenetic probe of a new variant of the holocentromeric satellite Tyba. Repeat-based phylogenies from TCS data were congruent with those obtained from GS data and the gene-alignment tree. Our results show that off-target TCS reads can be recycled to identify repeats for cyto- and phylogenomic investigations. Given the growing availability of TCS reads, driven by global phylogenomic projects, our strategy represents a way to recycle genomic data and contribute to a better characterization of plant biodiversity.
    • Encapsulation of α-tocopherol in whey protein isolate/chitosan particles using oil-in-water emulsion with optimal stability and bioaccessibility

      Xu, Weili; Lv, Kangxing; Mu, Wei; Zhou, Shaobo; Yang, Yang; University of Bedfordshire; Harbin Institute of Technology (Elsevier, 2021-05-23)
      The aim of this study was to develop an oil-in-water (O/W) emulsion using whey protein isolate (WPI)-chitosan (CN) complex to encapsulate α-tocopherol and to characterize their stability and bioaccessibility in vitro. The O/W emulsions prepared under the optimal conditions (mass ratio of WPI:CN = 1: 1, corn oil containing 5 g/100 g of α-tocopherol) exhibited a monomodal distribution (d = 803.3 ± 6.9 nm) with encapsulation rate of 86.3 ± 2.3%. The emulsions were stable under NaCl (0–150 mmol/L), sugar (0–5 g/100 g), 55 °C for 30 min, pH 5–6.5, even storage for 20 d at 4 °C and 25 °C. During gastric digestion, WPI situated at the surface of emulsion particles can be digested into small molecular peptides by pepsin, but the structure of the core-shell particles remained due to the cross-linking with CN. During intestinal digestion, the structure of the particles disintegrated over the digestion time, and the inner-oil phase was released. Release profiles of the α-tocopherol and free fatty acids showed a burst effect followed by slow release. These results suggest that the WPI-CN complex could be used to achieve a controlled and sustainable release of liposoluble bioactive compounds from O/W emulsions.
    • A comprehensive phylogenomic platform for exploring the angiosperm tree of life

      Baker, William J.; Bailey, Paul; Barber, Vanessa; Barker, Abigail; Bellot, Sidonie; Bishop, David; Botigué, Laura R.; Brewer, Grace E.; Carruthers, Tom; Clarkson, James J.; et al. (Oxford University Press, 2021-05-13)
      The tree of life is the fundamental biological roadmap for navigating the evolution and properties of life on Earth, and yet remains largely unknown. Even angiosperms (flowering plants) are fraught with data gaps, despite their critical role in sustaining terrestrial life. Today, high-throughput sequencing promises to significantly deepen our understanding of evolutionary relationships. Here, we describe a comprehensive phylogenomic platform for exploring the angiosperm tree of life, comprising a set of open tools and data based on the 353 nuclear genes targeted by the universal Angiosperms353 sequence capture probes. The primary goals of this paper are to (i) document our methods, (ii) describe our first data release and (iii) present a novel open data portal, the Kew Tree of Life Explorer (https://treeoflife.kew.org ). We aim to generate novel target sequence capture data for all genera of flowering plants, exploiting natural history collections such as herbarium specimens, and augment it with mined public data. Our first data release, described here, is the most extensive nuclear phylogenomic dataset for angiosperms to date, comprising 3,099 samples validated by DNA barcode and phylogenetic tests, representing all 64 orders, 404 families (96%) and 2,333 genera (17%). A "first pass" angiosperm tree of life was inferred from the data, which totalled 824,878 sequences, 489,086,049 base pairs, and 532,260 alignment columns, for interactive presentation in the Kew Tree of Life Explorer. This species tree was generated using methods that were rigorous, yet tractable at our scale of operation. Despite limitations pertaining to taxon and gene sampling, gene recovery, models of sequence evolution and paralogy, the tree strongly supports existing taxonomy, while challenging numerous hypothesized relationships among orders and placing many genera for the first time. The validated dataset, species tree and all intermediates are openly accessible via the Kew Tree of Life Explorer and will be updated as further data become available. This major milestone towards a complete tree of life for all flowering plant species opens doors to a highly integrated future for angiosperm phylogenomics through the systematic sequencing of standardised nuclear markers. Our approach has the potential to serve as a much-needed bridge between the growing movement to sequence the genomes of all life on Earth and the vast phylogenomic potential of the world's natural history collections.
    • Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution

      Serna-Sánchez, Maria Alejandra; Pérez-Escobar, Oscar A.; Bogarín, Diego; Torres-Jimenez, María Fernanda; Alvarez-Yela, Astrid Catalina; Arcila-Galvis, Juliana E.; Hall, Climbie F.; de Barros, Fábio; Pinheiro, Fábio; Dodsworth, Steven; et al. (SpringerNature, 2021-03-25)
      Recent phylogenomic analyses based on the maternally inherited plastid organelle have enlightened evolutionary relationships between the subfamilies of Orchidaceae and most of the tribes. However, uncertainty remains within several subtribes and genera for which phylogenetic relationships have not ever been tested in a phylogenomic context. To address these knowledge-gaps, we here provide the most extensively sampled analysis of the orchid family to date, based on 78 plastid coding genes representing 264 species, 117 genera, 18 tribes and 28 subtribes. Divergence times are also provided as inferred from strict and relaxed molecular clocks and birth-death tree models. Our taxon sampling includes 51 newly sequenced plastid genomes produced by a genome skimming approach. We focus our sampling efforts on previously unplaced clades within tribes Cymbidieae and Epidendreae. Our results confirmed phylogenetic relationships in Orchidaceae as recovered in previous studies, most of which were recovered with maximum support (209 of the 262 tree branches). We provide for the first time a clear phylogenetic placement for Codonorchideae within subfamily Orchidoideae, and Podochilieae and Collabieae within subfamily Epidendroideae. We also identify relationships that have been persistently problematic across multiple studies, regardless of the different details of sampling and genomic datasets used for phylogenetic reconstructions. Our study provides an expanded, robust temporal phylogenomic framework of the Orchidaceae that paves the way for biogeographical and macroevolutionary studies.
    • COVID-19 in Wuhan, China: pressing realities and city management

      Li, Rita Yi Man; Yue, Xiao-Guang; Crabbe, M. James C.; Hong Kong Shue Yan University; European University of Cyprus; Oxford University; University of Bedfordshire; Shanxi University (Frontiers, 2021-02-17)
      To most economists around the World, Covid-19 has provided an objective lesson in market failure. In the absence of complete information and sometimes even fake news, nobody knew what kind of pandemic it was at the beginning. Yet, there were 32,583 patients with laboratory-confirmed Covid-19 in Wuhan between December 8, 2019, and 8 March 8, 2020. The pandemic crippled and continues to cripple many health systems and has created unprecedented pressure on the psychological and physical aspects of millions of people's lives around the world. Over 200 countries and territories suffer from an acute shortage of medical personnel and medical equipment. The responses of different countries to Covid-19 has involved a range of measures that reflect national values, politics, and variations in scientific advice provided by local experts. Political considerations have often become more important than science. The Covid-19 outbreak in Wuhan was one of the most serious cases amongst all cities in the world, yet Wuhan managed and gain control of this pandemic. Health care systems and policies are important aspects that affect the control of infectious diseases like Covid-19. In China, 98% of primary health-care is complemented by traditional Chinese medicine (TCM) with allopathic approaches. Previous research has found that the cure rate increased by 33% among mild cases after adopting TCM with allopathic approaches. The hospital stay of severe patients with TCM's and nucleic acid turning negative was shortened by over 2 days. Prior to Covid-19, the government's Healthy China 2030 plan was already addressing chronic diseases in the aging population by raising healthcare expenditure. This is in sharp contrast to other countries with aging population problems such as Italy, where the government cut the healthcare budget substantially after the economic downturn. Hospital bed allocation went down from a maximum of four for every thousand inhabitants to a maximum of 3.7, despite the fact that 23.1% of the Italian population were aged 65 years and older in 2020. Likewise, the post-2008 financial crisis in Spain forced severe cuts to healthcare costs, which caused pressure on the system when there was an increase in demand for healthcare services. These measures particularly affected the elderly and disabled who are more vulnerable to Covid-19. Healthcare costs become underfunded at the level of 6.4% of GDP. Apart from scientific evidence on the effectiveness of TCM in curing covid, financial expenditures on health care is an important distal factor that helped Wuhan overcome Covid-19 quickly. In the following sections of this paper, we review the three city management stages adopted in Wuhan, to study proximal causes of success in combating the virus: (1) strong government intervention early in the outbreak; (2) the city lockdown; and, (3) the use of digital measures, such as a health code, when the city reopened.
    • Genome sequence of the biocontrol agent coniothyrium minitans conio (IMI 134523)

      Patel, Denise; Shittu, Taiwo Adewale; Baroncelli, Riccardo; Muthumeenakshi, Sreenivasaprasad; Osborne, Thomas H.; Janganan, Thamarai K.; Sreenivasaprasad, Surapareddy; University of Bedfordshire (American Phytopathological Society, 2021-02-16)
      Coniothyrium minitans (synonym, Paraphaeosphaeria minitans) is a highly specific mycoparasite of the wide host range crop pathogen Sclerotinia sclerotiorum. The capability of C. minitans to destroy the sclerotia of S. sclerotiorum has been well recognized and it is available as a widely used biocontrol product Contans WG. We present the draft genome sequence of C. minitans Conio (IMI 134523), which has previously been used in extensive studies that formed part of a registration package of the commercial product. This work provides a distinctive resource for further research into the molecular basis of mycoparasitism to harness the biocontrol potential of C. minitans.
    • Extreme climate response to marine cloud brightening in the arid Sahara-Sahel-Arabian Peninsula zone

      Zhu, Yuanzhuo; Zhang, Zhihua; Crabbe, M. James C.; Shandong University; Beijing Normal University; Oxford University; University of Bedfordshire; Shanxi University (Emerald, 2021-02-08)
      Purpose Climatic extreme events are predicted to occur more frequently and intensely and will significantly threat the living of residents in arid and semi-arid regions. Therefore, this study aims to assess climatic extremes’ response to the emerging climate change mitigation strategy using a marine cloud brightening (MCB) scheme. Design/methodology/approach Based on Hadley Centre Global Environmental Model version 2-Earth System model simulations of a MCB scheme, this study used six climatic extreme indices [i.e. the hottest days (TXx), the coolest nights (TNn), the warm spell duration (WSDI), the cold spell duration (CSDI), the consecutive dry days (CDD) and wettest consecutive five days (RX5day)] to analyze spatiotemporal evolution of climate extreme events in the arid Sahara-Sahel-Arabian Peninsula Zone with and without MCB implementation. Findings Compared with a Representative Concentration Pathways 4.5 scenario, from 2030 to 2059, implementation of MCB is predicted to decrease the mean annual TXx and TNn indices by 0.4–1.7 and 0.3–2.1°C, respectively, for most of the Sahara-Sahel-Arabian Peninsula zone. It would also shorten the mean annual WSDI index by 118–183 days and the mean annual CSDI index by only 1–3 days, especially in the southern Sahara-Sahel-Arabian Peninsula zone. In terms of extreme precipitation, MCB could also decrease the mean annual CDD index by 5–25 days in the whole Sahara and Sahel belt and increase the mean annual RX5day index by approximately 10 mm in the east part of the Sahel belt during 2030–2059. Originality/value The results provide the first insights into the impacts of MCB on extreme climate in the arid Sahara-Sahel-Arabian Peninsula zone.
    • MicroRNAs for virus pathogenicity and host responses, identified in SARS-CoV-2 genomes, may play roles in viral-host co-evolution in putative zoonotic host species

      Lange, Sigrun; Arisan, Elif Damla; Grant, Guy H.; Uysal-Onganer, Pinar; University of Westminster; Gebze Technical University; University of Bedfordshire (MDPI, 2021-01-16)
      Our recent study identified seven key microRNAs (miR-8066, 5197, 3611, 3934-3p, 1307-3p, 3691-3p, 1468-5p) similar between SARS-CoV-2 and the human genome, pointing at miR-related mechanisms in viral entry and the regulatory effects on host immunity. To identify the putative roles of these miRs in zoonosis, we assessed their conservation, compared with humans, in some key wild and domestic animal carriers of zoonotic viruses, including bat, pangolin, pig, cow, rat, and chicken. Out of the seven miRs under study, miR-3611 was the most strongly conserved across all species; miR-5197 was the most conserved in pangolin, pig, cow, bat, and rat; miR-1307 was most strongly conserved in pangolin, pig, cow, bat, and human; miR-3691-3p in pangolin, cow, and human; miR-3934-3p in pig and cow, followed by pangolin and bat; miR-1468 was most conserved in pangolin, pig, and bat; while miR-8066 was most conserved in pangolin and pig. In humans, miR-3611 and miR-1307 were most conserved, while miR-8066, miR-5197, miR-3334-3p and miR-1468 were least conserved, compared with pangolin, pig, cow, and bat. Furthermore, we identified that changes in the miR-5197 nucleotides between pangolin and human can generate three new miRs, with differing tissue distribution in the brain, lung, intestines, lymph nodes, and muscle, and with different downstream regulatory effects on KEGG pathways. This may be of considerable importance as miR-5197 is localized in the spike protein transcript area of the SARS-CoV-2 genome. Our findings may indicate roles for these miRs in viral-host co-evolution in zoonotic hosts, particularly highlighting pangolin, bat, cow, and pig as putative zoonotic carriers, while highlighting the miRs' roles in KEGG pathways linked to viral pathogenicity and host responses in humans. This in silico study paves the way for investigations into the roles of miRs in zoonotic disease.