• Measurement of specific radioactivity in proteins separated by two-dimensional gel electrophoresis

      Zhou, Shaobo; Mann, Christopher J.; Dunn, Michael J.; Preedy, Victor R.; Emery, Peter W.; (Wiley, 2006-03-07)
      We report a method to quantify the specific radioactivity of proteins that have been separated by 2-DE. Gels are stained with SyproRuby, and protein spots are excised. The SyproRuby dye is extracted from each spot using DMSO, and the fluorescence is quantified automatically using a plate reader. The extracted gel piece is then dissolved in hydrogen peroxide and radioactivity is quantified by liquid scintillation counting. Gentle agitation with DMSO for 24 h was found to extract all the SyproRuby dye from gel fragments. The fluorescence of the extract was linearly related to the amount of BSA loaded onto a series of 1-D gels. When rat muscle samples were run on 2-DE gels, the fluorescence extracted from 54 protein spots showed a good correlation (r = 0.79, p < 0.001) with the corresponding spot intensity measured by conventional scanning and image analysis. DMSO extraction was found not to affect the amount of radioactive protein left in the gel. When a series of BSA solutions of known specific radioactivity were run on 2-DE gels, the specific radioactivity measured by the new method showed a good correlation (r = 0.98, p < 0.01, n = 5) with the specific radioactivity measured directly before loading. Reproducibility of the method was measured in a series of 2-DE gels containing proteins from the livers of rats and mice that had been injected with [35S]methionine. Variability tended to increase when the amount of radioactivity in the protein spot was low, but for samples containing at least 10 dpm above background the CV was around 30%, which is comparable to that obtained when measuring protein expression by conventional image analysis of SyproRuby-stained 2-DE gels. Similar results were obtained whether spots were excised manually or using a spot excision robot. This method offers a high-throughput, cost-effective and reliable method of quantifying the specific radioactivity of proteins from metabolic labelling experiments carried out in vivo, so long as sufficient quantities of radioactive tracer are used.
    • A quantitative investigation into the losses of proteins at different stages of a two-dimensional gel electrophoresis procedure

      Zhou, Shaobo; Bailey, Matthew J.; Dunn, Michael J.; Preedy, Victor R.; Emery, Peter W.; (Wiley, 2005-08-01)
      We report the results of a systematic investigation to quantify the losses of protein during a well-established two-dimensional polyacrylamide gel electrophoresis (2-DE) procedure. Radioactively labelled proteins ([(14)C]bovine serum albumin and a homogenate prepared from the liver of a rat that had been injected with [(35)S]methionine) were used, and recovery was quantified by digesting pieces of gel in H(2)O(2) and subjecting the digests to liquid scintillation counting. When samples were loaded onto the first dimension immobilised pH gradient strips by in-gel rehydration, recovery of protein from the strips was 44-80% of the amount of protein loaded, depending on the amount of protein in the sample. Most of the unrecovered protein appeared to have adhered to the reswelling tray. Losses during isoelectric focusing (IEF) were much smaller (7-14%), although approximately 2% of the protein appeared to migrate from sample strips to adjacent blank strips in the focussing apparatus. A further 17-24% of the proteins were lost into the buffers during equilibration prior to running in the second dimension. Losses during the second dimension run and subsequent staining with SYPRO Ruby amounted to less than 10%. The overall loss during 2-DE was reduced by approximately 25% when proteins were loaded onto the IEF strips using sample cups instead of by in-gel rehydration. These extensive and variable losses during the 2-DE procedure mean that spot intensities on 2-DE gels cannot be used to derive reliable, quantitative information on the amounts of proteins present in the original sample.
    • A systematic investigation into the recovery of radioactively labeled proteins from sodium dodecyl sulfate-polyacrylamide gels

      Zhou, Shaobo; Bailey, Matthew J.; Dunn, Michael J.; Preedy, Victor R.; Emery, Peter W.; (Wiley, 2004-01-12)
      We report the results of a systematic investigation designed to optimize a method for quantifying radioactivity in proteins in sodium dodecyl sulfate-polyacrylamide gels. The method involves dissolving appropriately sized pieces of gel in hydrogen peroxide and heating to 70 degrees C overnight followed by liquid scintillation counting. H(2)O(2) had no effect on the count rates of [(14)C]bovine serum albumin (BSA) when counted in a conventional liquid scintillation system, and the count rates remained stable for several days. Temperatures below 70 degrees C resulted in incomplete extraction of radioactivity from gels containing [(14)C]BSA, but there was also a significant reduction in count rates in samples incubated at 80 degrees C. At 70 degrees C recovery was not affected by the amount of sample loaded onto the gel or by the staining procedure (Coomassie Brilliant Blue or SYPRO Ruby). Recoveries were in the range of 89-94%, and the coefficient of variation for five replicate samples was 5-10%. This method offers a reliable way of measuring the amount of radioactivity in proteins that have been separated by electrophoresis. It may be useful, for example, in quantitative metabolic labeling experiments when it is necessary to know precisely how much tracer has been incorporated into a particular protein.