• Corporate social responsibility and maturity mismatch of investment and financing: evidence from polluting and non-polluting companies

      Bao, Xiaolan; Luo, Qiaosheng; Li, Sicheng; Crabbe, M. James C.; Yue, Xiao-Guang; Huazhong Agricultural University; Oxford University; University of Bedfordshire; Shanxi University; European University Cyprus; et al. (MDPI, 2020-06-18)
      We investigate the influence of corporate social responsibility (CSR) on the maturity mismatch of investment and financing from the perspective of both polluting and non-polluting companies. The results reveal that CSR performance can aggravate the maturity mismatch of investment and financing; and the e ect can be more serious in the polluting companies. At the same time, we find that CSR makes companies obtain more short-term debt. What is more, polluting companies perform more environmental responsibilities in the form of long-term investments than non-polluting companies. These phenomena exacerbate the maturity mismatch of investment and financing; and this e ect is only significant when polluting companies choose CSR mandatory disclosure. The impact of CSR on the maturity mismatch of investment and financing is more apparent in companies with lower value and at smaller scales. We show that companies should not only perform their CSR to maintain a balanced economic and ecological development, but also pay attention to the aggravation of the maturity mismatch of investment and financing.
    • Isolation of an arsenate-respiring bacterium from a redox front in an arsenic-polluted aquifer in West Bengal, Bengal Basin

      Osborne, Thomas H.; McArthur, John H.; Sikdar, Pradip K.; Santini, Joanne M.; University College London; Indian Institute of Social Welfare and Business Management (American Chemical Society, 2015-03-03)
      Natural pollution of groundwater by arsenic adversely affects the health of tens of millions of people worldwide, with the deltaic aquifers of SE Asia being particularly polluted. The pollution is caused primarily by, or as a side reaction of, the microbial reduction of sedimentary Fe(III)-oxyhydroxides, but the organism(s) responsible for As release have not been isolated. Here we report the first isolation of a dissimilatory arsenate reducer from sediments of the Bengal Basin in West Bengal. The bacterium, here designated WB3, respires soluble arsenate and couples its reduction to the oxidation of acetate; WB3 is therefore implicated in the process of arsenic pollution of groundwater, which is largely by arsenite. The bacterium WB3 is also capable of reducing dissolved Fe(III) citrate, solid Fe(III)-oxyhydroxide, and elemental sulfur, using acetate as the electron donor. It is a member of the Desulfuromonas genus and possesses a dissimilatory arsenate reductase that was identified using degenerate polymerase chain reaction primers. The sediment from which WB3 was isolated was brown, Pleistocene sand at a depth of 35.2 m below ground level (mbgl). This level was some 3 cm below the boundary between the brown sands and overlying reduced, gray, Holocene aquifer sands. The color boundary is interpreted to be a reduction front that releases As for resorption downflow, yielding a high load of labile As sorbed to the sediment at a depth of 35.8 mbgl and concentrations of As in groundwater that reach >1000 μg/L.
    • Valuation impacts of environmental protection taxes and regulatory costs in heavy-polluting industries

      Tu, Wen-Jun; Yue, Xiao-Guang; Liu, Wei; Crabbe, M. James C.; Ningbo University; European University Cyprus; Porto Polytechnic; Qingdao University; Oxford University; University of Bedfordshire; et al. (MDPI, 2020-03-20)
      In 2016, the issue of the Environmental Protection Tax Law indicated the enhancement of environmental protection in China. This study examines the market reaction to firms in heavy-polluting industries, and the effects of external legal institutional quality and internal environmental disclosure on firm value around the passage of Environmental Protection Tax Law. Using an event study approach coupled with ordinary least square regressions, the researchers find a significantly negative market reaction to firms in heavy-polluting industries, but this negative reaction varies depending on the expected increase in future regulatory costs. Specifically, the above negative reaction is stronger when the firm reveals that itself or its subsidiary belongs to heavy-polluting industry, however it would be mitigated when a firm is in a region with better quality of legal institutions or discloses environmental improvement activities. Overall, the results are consistent with the market perceiving that the environmental protection tax law enacted would increase regulatory costs for firms in heavy-polluting industries, and also show the higher-quality regional legal institutions and more efforts on environmental protection could relieve the market’s pessimism caused by uncertainty.