• Acoustic mapping of submerged Stone Age sites – a HALD approach

      Grøn, Ole; Boldreel, Lars Ole; Smith, Morgan F.; Joy, Shawn; Tayong-Boumda, Rostand; Mäder, Andreas; Bleicher, Niels; Madsen, Bo; Cvikel, Deborah; Nilsson, Björn; et al. (MDPI, 2021-01-27)
      Acoustic response from lithics knapped by humans has been demonstrated to facilitate effective detection of submerged Stone Age sites exposed on the seafloor or embedded within its sediments. This phenomenon has recently enabled the non-invasive detection of several hitherto unknown submerged Stone Age sites, as well as the registration of acoustic responses from already known localities. Investigation of the acoustic-response characteristics of knapped lithics, which appear not to be replicated in naturally cracked lithic pieces (geofacts), is presently on-going through laboratory experiments and finite element (FE) modelling of high-resolution 3D-scanned pieces. Experimental work is also being undertaken, employing chirp sub-bottom systems (reflection seismic) on known sites in marine areas and inland water bodies. Fieldwork has already yielded positive results in this initial stage of development of an optimised Human-Altered Lithic Detection (HALD) method for mapping submerged Stone Age sites. This paper reviews the maritime archaeological perspectives of this promising approach, which potentially facilitates new and improved practice, summarizes existing data, and reports on the present state of development. Its focus is not reflection seismics as such, but a useful resonance phenomenon induced by the use of high-resolution reflection seismic systems.
    • Seasonal variations in carbon, nitrogen and phosphorus concentrations and C:N:P stoichiometry in different organs of a Larix principis-rupprechtii Mayr. plantation in the Qinling Mountains, China

      Li, Haliang; Crabbe, M. James C.; Xu, Fuli; Wang, Weiling; Ma, Lihua; Niu, Ruilong; Gao, Xing; Li, Xingxing; Zhang, Pei; Ma, Xin; et al. (Public library of science, 2017-09-22)
      Understanding how concentrations of elements and their stoichiometry change with plant growth and age is critical for predicting plant community responses to environmental change. Weusedlong-term field experiments to explore how the leaf, stem and root carbon (C), nitrogen (N) and phosphorous (P) concentrations and their stoichiometry changed with growth and stand age in a L.principis-rupprechtii Mayr. plantation from 2012–2015 in the Qinling Mountains, China. Our results showed that the C, N and P concentrations and stoichiometric ratios in different tissues of larch stands were affected by stand age, organ type andsampling month and displayed multiple correlations with increased stand age in different growing seasons. Generally, leaf C and N concentrations were greatest in the fast-growing season, but leaf P concentrations were greatest in the early growing season. However, no clear seasonal tendencies in the stem and root C, N and P concentrations were observed with growth. In contrast to N and P, few differences were found in organ-specific C concentrations. Leaf N:P was greatest in the fast-growing season, while C:N and C:P were greatest in the late-growing season. No clear variations were observed in stem and root C:N, C:P andN:Pthroughout the entire growing season, but leaf N:P was less than 14, suggesting that the growth of larch stands was limited by N in our study region. Compared to global plant element concentrations and stoichiometry, the leaves of larch stands had higher C, P, C:NandC:PbutlowerNandN:P,andtherootshadgreater PandC:NbutlowerN,C:Pand N:P. Our study provides baseline information for describing the changes in nutritional elements with plant growth, which will facilitates plantation forest management and restoration, and makes avaluable contribution to the global data pool on leaf nutrition and stoichiometry.
    • Seasonal variations in carbon, nitrogen and phosphorus concentrations and C:N:P stoichiometry in the leaves of differently aged Larix principis-rupprechtii Mayr. plantations

      Li, Hailiang; Crabbe, M. James C.; Xu, Fuli; Wang, Weiling; Niu, Ruilong; Gao, Xing; Zhang, Pei; Chen, Haikui; Northwest A & F University, Yangling; University of Oxford; et al. (MDPI, 2017-09-30)
      The concentrations and stoichiometry of certain elements (carbon, nitrogen and phosphorus) are critical to the maintenance of plant functional and environmental adaptation during plant growth. We explore how the concentrations of C, N and P and the ratios of C:N, C:P, and N:P in the leaves of differently aged Larix principis-rupprechtii Mayr. plantations changed with growing season and stand age from 2012 to 2015 in the Qinling Mountains, China. The results showed that the element concentration and stoichiometric ratios in leaves were significantly affected by sampling month, stand age and sampling year; and multiple correlations with stand age were observed in different growing seasons. Compared to global element concentrations and stoichiometry in plants, the leaves of larch stands in the study region had higher C and P concentrations and C:N and C:P ratios but lower N concentrations and N:P ratios than global levels. The leaf N:P ratios of all of the larch stands were generally less than 14, suggesting that the growth of larch stands was limited by N in the study region. Our study facilitates the management and restoration of forest plantation and provides a valuable contribution to the global pool of leaf nutrition and stoichiometry data.