• Corporate social responsibility and maturity mismatch of investment and financing: evidence from polluting and non-polluting companies

      Bao, Xiaolan; Luo, Qiaosheng; Li, Sicheng; Crabbe, M. James C.; Yue, Xiao-Guang; Huazhong Agricultural University; Oxford University; University of Bedfordshire; Shanxi University; European University Cyprus; et al. (MDPI, 2020-06-18)
      We investigate the influence of corporate social responsibility (CSR) on the maturity mismatch of investment and financing from the perspective of both polluting and non-polluting companies. The results reveal that CSR performance can aggravate the maturity mismatch of investment and financing; and the e ect can be more serious in the polluting companies. At the same time, we find that CSR makes companies obtain more short-term debt. What is more, polluting companies perform more environmental responsibilities in the form of long-term investments than non-polluting companies. These phenomena exacerbate the maturity mismatch of investment and financing; and this e ect is only significant when polluting companies choose CSR mandatory disclosure. The impact of CSR on the maturity mismatch of investment and financing is more apparent in companies with lower value and at smaller scales. We show that companies should not only perform their CSR to maintain a balanced economic and ecological development, but also pay attention to the aggravation of the maturity mismatch of investment and financing.
    • Dr. Yang Zhong: an explorer on the road forever

      Chen, Fan; Lu, Bao-Rong; Crabbe, M. James C.; Zhao, Jiayuan; Zhong, Bo-jian; Geng, Yu-peng; Zheng, Yufang; Wang, Hong-yan; Chinese Academy of Sciences; Fudan University; et al. (Springer, 2017-12-30)
      On the morning of September 25th 2017, grievous news spread from the remote Ordos region of Inner Mongolia to Fudan University campus in Shanghai. Professor Yang Zhong, a famous botanist and the Dean of Fudan University’s graduate school, passed away in a tragic car accident while on a business trip.
    • Energy management optimization of open-pit mine solar photothermal-photoelectric membrane distillation using a support vector machine and a non-dominated genetic algorithm

      Zhang, Sai; Lu, Caiwu; Jiang, Song; Lu, Shan; Crabbe, M. James C.; Xiong, Neal Naixue; Xi'an University of Architecture and Technology; Hong Kong University of Science and Technology; Oxford University; University of Bedfordshire; et al. (Institute of Electrical and Electronics Engineers, 2020-08-25)
      As a distributed energy source, open-pit mine solar photothermal-photoelectric membrane distillation can convert solar energy into heat and electrical energy to provide power for membrane distillation water purification system. In mine sewage treatment, the solar membrane distillation system has the advantages of high desalination rate, good water quality and low cost. However, this system has not been widely promoted and applied because of its high energy consumption and low membrane flux. Different operating parameters have a greater impact on the operating efficiency of the solar membrane distillation system. In this study, a natural cooling film distillation system was built, and the response surface method was used to analyze it, and a multi-objective optimization algorithm was used to optimize the operating conditions and improve the energy efficiency of the system. In our experiment, the hot end feed temperature, hot end feed flow rate, cold end cooling water flow rate, and membrane area were used as variables, and the membrane flux, thermal efficiency, and energy consumption values were investigated as target values. We used a support vector machine (SVM) with improved fitting, and substituted the fitting rediction model into the response surface method for the relationship between the variable and the target value collaborative analysis was followed by substituting the model into a non-dominated sorting genetic algorithm-II (NSGA-II). After the optimization operation, the optimal working conditions were obtained to improve the operating efficiency of the solar membrane distillation system, which will enable open-pit mine prosumers to realize intelligent management of solar energy generation, storage and consumption simultaneously.
    • Fiscal expenditures on science and technology and environmental pollution: evidence from China

      Xiong, Wanfang; Han, Yan; Crabbe, M. James C.; Yue, Xiao-Guang; Huazhong University of Science and Technology; Beijing Institute of Technology; Oxford University; Shanxi University; University of Bedfordshire; European University Cyprus; et al. (MDPI, 2020-11-25)
      Studying the driving factors of environmental pollution is of great importance for China. Previous literature mainly focused on the cause of national aggregate emission changes. However, research about the effect of fiscal expenditures on science and technology (FESTs) on environmental pollution is rare. Considering the large gap among cities in China, it is necessary to investigate whether and how FESTs affect environmental pollution among cities. We adopted three kinds of typical environmental pollutants including sulfur dioxide (SO2) emissions, wastewater emission, and atmospheric particulate matter less than 2.5 micrometers in diameter (PM2.5). Using the data of 260 prefecture-level cities over ten years in China, we found that FESTs play a significantly positive role in reducing sulfur dioxide (SO2) emissions and PM2.5 concentrations, but fail to alleviate wastewater emissions. Specifically, for every 1% increase in FESTs, SO2 emissions were reduced by 5.317% and PM2.5 concentrations were reduced by 5.329%. Furthermore, we found that FESTs reduced environmental pollution by impeding fixed asset investments and by promoting research and development activities (R&D). Moreover, the impacts of FESTs on environmental pollution varied across regions and sub-periods. Our results are robust to a series of additional checks, including alternative econometric specifications, generalized method of moments (GMM) analysis and overcoming potential endogeneity with an instrumental variable. Our findings confirm that government efforts can be effective on pollution control in China. Hence, all governments should pay more attention to FESTs for sustainable development and environmental quality improvements.
    • History and trends in ecological stoichiometry research from 1992 to 2019: a scientometric analysis

      Li, Hailiang; Crabbe, M. James C.; Chen, Haikui; Gansu Agricultural University; Oxford University; University of Bedfordshire; Shanxi University; North Minzu University (MDPI, 2020-10-27)
      Ecological stoichiometry (ES), as an ecological theory, provides a framework for studying various ecological processes, and it has been applied successfully in fields ranging from nutrient dynamics to biogeochemical cycling. Through the application of ES theory, researchers are beginning to understand many diverse ecological topics. The aim of this paper was to identify the main characteristics of ES, especially to clarify the evolution, and potential trends of this field for future ecological studies. We used CiteSpace software to conduct a bibliometric review of ES research publications from 1992 to 2019 extracted from the Web of Science. The results showed that the United States has been a major contributor to this field; approximately half of the top 15 academic institutions contributing to ES research were in the United States. Although the largest number of publications on ES were from China, the impact of these academic papers has thus far been less than that of the papers from other countries. Moreover, none of the top 15 authors or cited authors contributing to publications on ES from 1992 to 2019 were from China. ES research has developed rapidly and has changed from single-discipline ES studies to a multidisciplinary “auxiliary tool” used in different fields. Overall, ES shows great research potential and application value, especially for studies on nutrient cycling, ecosystem sustainability and biogeochemical cycling.
    • The impact of sustainability awareness and moral values on environmental laws

      Li, Rita Yi Man; Li, Yi Lut; Crabbe, M. James C.; Manta, Otilia; Shoaib, Muhammad; Hong Kong Shue Yan University; Hastings & Co.; Oxford University; University of Bedfordshire; Shanxi University; et al. (MDPI, 2021-05-24)
      We argue that environmental legislation and regulation of more developed countries reflects significantly their moral values, but in less developed countries it differs significantly from their moral values. We examined this topic by using the keywords “sustainability” and “sustainable development”, studying web pages and articles published between 1974 to 2018 in Web of Science, Scopus and Google. Australia, Zimbabwe, and Uganda were ranked as the top three countries in the number of Google searches for sustainability. The top five cities that appeared in sustainability searches through Google are all from Africa. In terms of academic publications, China, India, and Brazil record among the largest numbers of sustainability and sustainable development articles in Scopus. Six out of the ten top productive institutions publishing sustainable development articles indexed in Scopus were located in developing countries, indicating that developing countries are well aware of the issues surrounding sustainable development. Our results show that when environmental law reflects moral values for betterment, legal adoption is more likely to be successful, which usually happens in well developed regions. In less-developed states, environmental law differs significantly from moral values, such that changes in moral values are necessary for successful legal implementation. Our study has important implications for the development of policies and cultures, together with the enforcement of environmental laws and regulations in all countries.
    • Impacts of stratospheric aerosol geoengineering strategy on Caribbean coral reefs

      Zhang, Z; Jones, A.; Crabbe, M. James C. (Emerald, 2017-07-24)
      Purpose: Currently, negotiation on global carbon emissions reduction is very difficult due to lack of international willingness. In response, geoengineering (climate engineering) strategy is proposed to artificially cool the planet. Meanwhile, as the harbor around one-third of all described marine species, coral reefs are the most sensitive ecosystem on the planet to climate change. However, until now, there is no any quantitative assessment on impacts of geoengineering on coral reefs. In this study, we model impacts of stratospheric aerosol geoengineering on coral reefs. Design/methodology/approach: We will use the HadGEM2-ES climate model to model and evaluate impacts of stratospheric aerosol geoengineering on coral reefs. Findings: This study shows that a) stratospheric aerosol geoengineering could significantly mitigate future coral bleaching throughout the Caribbean Sea; b) Changes in downward solar irradiation, sea level rise and sea surface temperature caused by geoengineering implementation should have very little impacts on coral reefs; c) although geoengineering would prolong the return period of future hurricanes, this may still be too short to ensure coral recruitment and survival after hurricane damage.
    • Models for oil refinery waste management using determined and fuzzy conditions

      Zhumadillayeva, Ainur; Orazbayеv, Batyr; Santeyeva, Saya; Dyussekeyev, Kanagat; Li, Rita Yi Man; Crabbe, M. James C.; Yue, Xiao-Guang; L.N.Gumilyov Eurasian National University, Kazakhstan; Hong Kong Shue Yan University; Rajamangala University of Technology Rattanakosin, Thailand; et al. (MDPI, 2020-06-03)
      This study developed models to solve problems of optimisation, production, and consumption in waste management based on methods of system analysis. Mathematical models of the problems of optimisation and sustainable waste management in deterministic conditions and in a fuzzy environment were formulated. The income from production was maximised considering environmental standards that apply to the field of macroeconomics and microeconomics. The proposed approach used MANAGER software to formalise and solve the problem of revenue optimisation with production waste management to optimise the production of oil products with waste management at a specific technological facility of the Atyrau oil refinery in Kazakhstan. Based on the combined application of the principles of maximin and Pareto optimality, a formulation of the problem of production optimisation with waste management was obtained and a heuristic algorithm for solving the formulated fuzzy optimisation problem with waste management was developed.
    • Salicylic acid collaborates with gene silencing to tomato defense against tomato yellow leaf curl virus (TYLCV)

      Li, Yunzhou; Muhammad, Tayab; Wang, Yong; Zhang, Dalong; Crabbe, M. James C.; Liang, Yan; Northwest A&F University; Guizhou University; Shangdong Agricultural University; University of Oxford; et al. (Pakistan Botanical Society, 2018-07-10)
      Antiviral research in plants has been focused on RNA silencing (i.e. RNA interference), and several studies suggest that salicylic acid (SA)-mediated resistance is a key part of plant antiviral defense. However, the antiviral defense mechanism of SA-mediation is still unclear, and several recent studies have suggested a connection between SA-mediated defense and RNA silencing, which needs further characterization in TYLCV infection. In this study, both SA-mediated defense and the RNA silencing mechanism were observed to play an important role in the antiviral response against TYLCV. First, we found that SA application enhanced the resistance to TYLCV in tomato plants. The expression of RNA-silencing-related genes, such as SlDCL1, SlDCL2, SlDCL4, SlRDR2, SlRDR3a, SlRDR6a, SlAGO1, and SlAGO4, were significantly triggered by exogenous SA application and inoculation with TYLCV, respectively. Furthermore, silencing of SlDCL2, SlDCL4 in tomato resulted in attenuated resistance to TYLCV, and reduced the expression of defense-related genes (SlPR1 and SlPR1b) in SA-mediated defense after infection with TYLCV, particularly in SlDCL2/SlDCL4-silenced plants. Taken together, we conclude that SA collaborates with gene silencing in tomato defense against TYLCV.
    • Seasonal variations in carbon, nitrogen and phosphorus concentrations and C:N:P stoichiometry in different organs of a Larix principis-rupprechtii Mayr. plantation in the Qinling Mountains, China

      Li, Haliang; Crabbe, M. James C.; Xu, Fuli; Wang, Weiling; Ma, Lihua; Niu, Ruilong; Gao, Xing; Li, Xingxing; Zhang, Pei; Ma, Xin; et al. (Public library of science, 2017-09-22)
      Understanding how concentrations of elements and their stoichiometry change with plant growth and age is critical for predicting plant community responses to environmental change. Weusedlong-term field experiments to explore how the leaf, stem and root carbon (C), nitrogen (N) and phosphorous (P) concentrations and their stoichiometry changed with growth and stand age in a L.principis-rupprechtii Mayr. plantation from 2012–2015 in the Qinling Mountains, China. Our results showed that the C, N and P concentrations and stoichiometric ratios in different tissues of larch stands were affected by stand age, organ type andsampling month and displayed multiple correlations with increased stand age in different growing seasons. Generally, leaf C and N concentrations were greatest in the fast-growing season, but leaf P concentrations were greatest in the early growing season. However, no clear seasonal tendencies in the stem and root C, N and P concentrations were observed with growth. In contrast to N and P, few differences were found in organ-specific C concentrations. Leaf N:P was greatest in the fast-growing season, while C:N and C:P were greatest in the late-growing season. No clear variations were observed in stem and root C:N, C:P andN:Pthroughout the entire growing season, but leaf N:P was less than 14, suggesting that the growth of larch stands was limited by N in our study region. Compared to global plant element concentrations and stoichiometry, the leaves of larch stands had higher C, P, C:NandC:PbutlowerNandN:P,andtherootshadgreater PandC:NbutlowerN,C:Pand N:P. Our study provides baseline information for describing the changes in nutritional elements with plant growth, which will facilitates plantation forest management and restoration, and makes avaluable contribution to the global data pool on leaf nutrition and stoichiometry.
    • Seasonal variations in carbon, nitrogen and phosphorus concentrations and C:N:P stoichiometry in the leaves of differently aged Larix principis-rupprechtii Mayr. plantations

      Li, Hailiang; Crabbe, M. James C.; Xu, Fuli; Wang, Weiling; Niu, Ruilong; Gao, Xing; Zhang, Pei; Chen, Haikui; Northwest A & F University, Yangling; University of Oxford; et al. (MDPI, 2017-09-30)
      The concentrations and stoichiometry of certain elements (carbon, nitrogen and phosphorus) are critical to the maintenance of plant functional and environmental adaptation during plant growth. We explore how the concentrations of C, N and P and the ratios of C:N, C:P, and N:P in the leaves of differently aged Larix principis-rupprechtii Mayr. plantations changed with growing season and stand age from 2012 to 2015 in the Qinling Mountains, China. The results showed that the element concentration and stoichiometric ratios in leaves were significantly affected by sampling month, stand age and sampling year; and multiple correlations with stand age were observed in different growing seasons. Compared to global element concentrations and stoichiometry in plants, the leaves of larch stands in the study region had higher C and P concentrations and C:N and C:P ratios but lower N concentrations and N:P ratios than global levels. The leaf N:P ratios of all of the larch stands were generally less than 14, suggesting that the growth of larch stands was limited by N in the study region. Our study facilitates the management and restoration of forest plantation and provides a valuable contribution to the global pool of leaf nutrition and stoichiometry data.
    • Valuation impacts of environmental protection taxes and regulatory costs in heavy-polluting industries

      Tu, Wen-Jun; Yue, Xiao-Guang; Liu, Wei; Crabbe, M. James C.; Ningbo University; European University Cyprus; Porto Polytechnic; Qingdao University; Oxford University; University of Bedfordshire; et al. (MDPI, 2020-03-20)
      In 2016, the issue of the Environmental Protection Tax Law indicated the enhancement of environmental protection in China. This study examines the market reaction to firms in heavy-polluting industries, and the effects of external legal institutional quality and internal environmental disclosure on firm value around the passage of Environmental Protection Tax Law. Using an event study approach coupled with ordinary least square regressions, the researchers find a significantly negative market reaction to firms in heavy-polluting industries, but this negative reaction varies depending on the expected increase in future regulatory costs. Specifically, the above negative reaction is stronger when the firm reveals that itself or its subsidiary belongs to heavy-polluting industry, however it would be mitigated when a firm is in a region with better quality of legal institutions or discloses environmental improvement activities. Overall, the results are consistent with the market perceiving that the environmental protection tax law enacted would increase regulatory costs for firms in heavy-polluting industries, and also show the higher-quality regional legal institutions and more efforts on environmental protection could relieve the market’s pessimism caused by uncertainty.