• Digital forensics challenges to big data in the cloud

      Feng, Xiaohua; Zhao, Yuping; University of Bedfordshire; Peking University (2017-04-28)
      As a new research area, Digital Forensics is a subject in a rapid development society. Cyber security for Big Data in the Cloud is getting attention more than ever. Computing breach requires digital forensics to seize the digital evidence to locate who done it and what has been done maliciously and possible risk/damage assessing what loss could leads to. In particular, for Big Data attack cases, Digital Forensics has been facing even more challenge than original digital breach investigations. Nowadays, Big Data due to its characteristics of three “V”s (Volume, Velocity, and Variety), they are either synchronized with Cloud (Such as smart phone) or stored on the Cloud, in order to sort out the storage capacity etc. problems, which made Digital Forensics investigation even more difficult. The Big Data-Digital Forensics issue for Cloud is difficult due to some issues. One of them is physically identify specific wanted device. Data are distributed in the cloud, customer or the digital forensics practitioner cannot have a fully access control like the traditional investigation does. The Smart City technique is making use of ICT (information communications technology) to collecting, detecting, analysing and integrating the key information data of core systems in running the cities. Meantime, the control is making intelligent responses to different requirements that include daily livelihood, PII (Personally identifiable information) security, environmental protection, public safety, industrial and commercial activities and city services. The Smart City data are Big Data, collected and gathered by the IoT (Internet of Things). This paper has summerised our review on the trends of Digital Forensics served for Big Data. The evidence acquisition challenge is discussed. A case study of a Smart City project with the IoT collected services Big data which are stored at the cloud computing environment is represented. The techniques can be generalised to other Big Data in the Cloud environment.