Show simple item record

dc.contributor.authorAggoun, Amaren
dc.date.accessioned2016-01-15T13:52:56Zen
dc.date.available2016-01-15T13:52:56Zen
dc.date.issued2011-11en
dc.identifier.citationAggoun, A. (2011) 'Compression of 3D Integral Images Using 3D Wavelet Transform' Journal of Display Technology 7 (11):586en
dc.identifier.issn1551-319Xen
dc.identifier.issn1558-9323en
dc.identifier.doi10.1109/JDT.2011.2159359en
dc.identifier.urihttp://hdl.handle.net/10547/593544en
dc.description.abstractIntegral imaging is a technique capable of displaying 3D images with continuous parallax in full natural color. It has been reported by many research groups and is becoming a viable alternative for 3D television. With the development of 3D integral imaging, image compression becomes mandatory for the storage and transmission of 3D integral images. In this paper, the use of the lifting scheme in the application of a 3D Wavelet Transform for the compression of 3D Integral Images is proposed. The method requires the extraction of different viewpoint images from an integral image. The 3D wavelet decomposition is computed by applying three separate 1D transforms along the coordinate axes of the given sequence of Viewpoint Images. The spatial wavelet decompositions on a single viewpoint and on the inter-viewpoint images are performed using the biorthogonal Cohen-Debauchies-Feauveau 9/7 and 5/3 filter banks, respectively. All the resulting wavelet coefficients from application of the 3D wavelet decomposition are arithmetic encoded. Simulations are performed on a set of different grey level 3D Integral Images using a uniform scalar quantizer with deadzone. The results for the average of the four intensity distributions are presented and compared with previous use of 2D DWT and 3D-DCT based schemes. It was found that the algorithm achieves better rate-distortion performance and reconstructs the images with much better image quality at very low bit rates.
dc.language.isoenen
dc.publisherIEEEen
dc.relation.urlhttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6021885en
dc.rightsArchived with thanks to Journal of Display Technologyen
dc.subjectintegral imagingen
dc.subject3D imagingen
dc.subject3D Wavelet Transformen
dc.titleCompression of 3D integral images using 3D wavelet transformen
dc.typeArticleen
dc.contributor.departmentBrunel Universityen
dc.identifier.journalJournal of Display Technologyen
html.description.abstractIntegral imaging is a technique capable of displaying 3D images with continuous parallax in full natural color. It has been reported by many research groups and is becoming a viable alternative for 3D television. With the development of 3D integral imaging, image compression becomes mandatory for the storage and transmission of 3D integral images. In this paper, the use of the lifting scheme in the application of a 3D Wavelet Transform for the compression of 3D Integral Images is proposed. The method requires the extraction of different viewpoint images from an integral image. The 3D wavelet decomposition is computed by applying three separate 1D transforms along the coordinate axes of the given sequence of Viewpoint Images. The spatial wavelet decompositions on a single viewpoint and on the inter-viewpoint images are performed using the biorthogonal Cohen-Debauchies-Feauveau 9/7 and 5/3 filter banks, respectively. All the resulting wavelet coefficients from application of the 3D wavelet decomposition are arithmetic encoded. Simulations are performed on a set of different grey level 3D Integral Images using a uniform scalar quantizer with deadzone. The results for the average of the four intensity distributions are presented and compared with previous use of 2D DWT and 3D-DCT based schemes. It was found that the algorithm achieves better rate-distortion performance and reconstructs the images with much better image quality at very low bit rates.


This item appears in the following Collection(s)

Show simple item record