• Haemophilia A and cardiovascular morbidity in a female SHAM syndrome carrier due to skewed X chromosome inactivation

      Janczar, Szymon; Kosinska, Joanna; Ploski, Rafal; Pastorczak, Agata; Wegner, Olga; Zalewska-Szewczyk, Beata; Paige, Adam J.W.; Borowiec, Maciej; Mlynarski, Wojciech; Medical University of Lodz; et al. (Elsevier, 2016-01)
      We have recently described a severe haemophilia A and moyamoya (SHAM) syndrome caused by Xq28 deletions encompassing F8 and the BRCC3 familial moyamoya gene. The phenotype includes haemophilia A, moyamoya angiopathy, dysmorphia and hypertension. The genetic analysis of the family of our SHAM patient demonstrated carrier state in proband's mother and sister. The patient's mother is apparently well, whereas his currently 18-years-old sister presents with mild haemophilia A, coarctation of the aorta, hypertension, and ventricular arrhythmia. We performed X chromosome inactivation assay based on HpaII methylation analysis of a polymorphic short tandem repeat (STR) in the X linked AR (androgen receptor) gene and used quantitative real-time RT PCR to measure the expression of genes from the deleted region in proband's family members. We found an extremely skewed X chromosome inactivation pattern in the female members of the family leading to preferential inactivation of the X chromosome without Xq28 deletion in patient's sister. We demonstrated differential expression of the genes from the deleted region in four members of the family, that tightly correlates with the clinical features. In conclusion, we show that the haematologic and cardiovascular morbidity and the discrepancy between patient's sister and mother despite the same genetic lesion are due to skewed X chromosome inactivation leading to clinically relevant differential expression of SHAM syndrome genes. This report highlights the role for BRCC3 in cardiovascular physiology and disease, and demonstrates that in some complex hereditary syndromes full diagnostics may require the examination of both genetic and epigenetic events.
    • Pre-hybridisation: an efficient way of suppressing endogenous biotin-binding activity inherent to biotin–streptavidin detection system

      Ahmed, Raju; Spikings, Emma; Zhou, Shaobo; Thompsett, Andrew; Zhang, Tiantian; University of Bedfordshire; University of East London; Bournemouth University (Elsevier, 2014-04)
      Endogenous biotin or biotinylated protein binding activity is a major drawback to biotin-avidin/streptavidin detection system. The avidin/streptavidin conjugate used to detect the complex of the biotinylated secondary antibody and the primary antibody binds to endogenous biotin or biotinylated proteins leading to non-specific signals. In Western blot, the endogenous biotin or biotinylated protein binding activity is usually manifested in the form of ~72kDa, ~75kDa and ~150kDa protein bands, which often mask the signals of interest. To overcome this problem, a method based on prior hybridisation of the biotinylated secondary antibody and the streptavidin conjugate was developed. The method was tested alongside the conventional biotin-streptavidin method on proteins extracted from zebrafish (Danio rerio) embryos. Results showed that the newly developed method efficiently suppresses the endogenous biotin or biotinylated protein binding activity inherent to the biotin-streptavidin detection system.
    • Preserved global histone H4 acetylation linked to ETV6-RUNX1 fusion and PAX5 deletions is associated with favorable outcome in pediatric B-cell progenitor acute lymphoblastic leukemia.

      Janczar, Karolina; Janczar, Szymon; Pastorczak, Agata; Mycko, K.; Paige, Adam J.W.; Zalewska-Szewczyk, Beata; Wagrowska-Danilewicz, M.; Danilewicz, Marian; Mlynarski, Wojciech; Medical University of Lodz; et al. (Elsevier, 2015-10-20)
      Epigenetic dysregulation is a hallmark of cancer executed by a number of complex processes the most important of which converge on DNA methylation and histone protein modifications. Epigenetic marks are potentially reversible and thus promising drug targets. In the setting of acute lymphoblastic leukemia (ALL) they have been associated with clinicopathological features including risk of relapse or molecular subgroups of the disease. Here, using immunocytochemistry of bone marrow smears from diagnosis, we studied global histone H4 acetylation, whose loss was previously linked to treatment failure in adults with ALL, in pediatric patients. We demonstrate that preserved global histone H4 acetylation is significantly associated with favorable outcome (RFS, EFS, OS) in children with B cell progenitor (BCP) ALL, recapitulating the findings from adult populations. Further, for the first time we demonstrate differential histone H4 acetylation in molecular subclasses of BCP-ALL including cases with ETV6-RUNX1 fusion gene or PAX5 deletion or deletions in genes linked to B cell development. We conclude global histone H4 acetylation is a prognostic marker and a potential therapeutic target in ALL.
    • Sonic Hedgehog regulates thymic epithelial cell differentiation

      Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L.; Ono, Masahiro; Holländer, Georg; Crompton, Tessa; University College London; et al. (Elsevier, 2016-01)
      Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus.
    • Ultrastructural observations of the early and late stages of gorgonian coral (Junceella juncea) oocytes

      Tsai, Sujune; Jhuang, Yating; Spikings, Emma; Sung, Ping-Jyun; Lin, Chiahsin; Mingdao University; National Dong Hwa University; University of Bedfordshire (Elsevier, 2014-08)
      The developmental oogenesis of gorgonian coral was investigated at the histological level. The objective of this study was to examine and improve the understanding of Junceella juncea oogenesis using ultrastructural methods, such as histological sectioning and transmission electron microscopy. At least three types of yolk materials were observed in this study: yolk body, lipid granules and cortical alveoli. Some of the complex yolk materials were encompassed by concentric or arched layers of smooth and rough endoplasmic reticulum and the Golgi complex in early stage oocytes. Different types of vesicles were found in both early and late stage oocytes and some granules could be seen inside the empty vesicles. This may be a possible method for elaborating complex yolk materials. Homogeneous yolks from different types of inclusions were abundant and the autosynthesis of yolk may be a major mechanism in J. juncea oocytes. This is the first report of the ultrastructural observation of oogenesis in gorgonian coral species using transmission electron microscopy. Our study obtained relatively detailed information at the ultrastructural level, and it provides an overview of the oocyte ultrastucture of the gorgonian coral J. juncea.
    • Use of methanol as cryoprotectant and its effect on sox genes and proteins in chilled zebrafish embryos

      Desai, Kunjan; Spikings, Emma; Zhang, Tiantian (Elsevier, 2015-08)
      Methanol is a widely used cryoprotectant (CPA) in cryopreservation of fish embryos, however little is known about its effect at the molecular level. This study investigated the effect of methanol on sox gene and protein expression in zebrafish embryos (50% epiboly) when they were chilled for 3h and subsequently warmed and cultured to the hatching stages. Initial experiments were carried out to evaluate the chilling tolerance of 50% epiboly embryos which showed no significant differences in hatching rates for up to 6h chilling in methanol (0.2-, 0.5- and 1M). Subsequent experiments in embryos that had been chilled for 3h in 1M methanol and warmed and cultured up to the hatching stages found that sox2 and sox3 gene expression were increased significantly in hatched embryos that had been chilled compared to non-chilled controls. Sox19a gene expression also remained above control levels in the chilled embryos at all developmental stages tested. Whilst stable sox2 protein expression was observed between non-chilled controls and embryos chilled for 3h with or without MeOH, a surge in sox19a protein expression was observed in embryos chilled for 3h in the presence of 1M MeOH compared to non-chilled controls and then returned to control levels by the hatching stage. The protective effect of MeOH was increased with increasing concentrations. Effect of methanol at molecular level during chilling was reported here first time which could add new parameter in selection of cryoprotectant while designing cryopreservation protocol.