Classification of newborn EEG maturity with Bayesian averaging over decision trees
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
Issue Date
2012-08Subjects
G760 Machine Learningelectroencephalogram
electroencephalography
Markov Chain Monte Carlo integration
MCMC integration
EEG maturity
newborn brain maturity
Metadata
Show full item recordAbstract
EEG experts can assess a newborn’s brain maturity by visual analysis of age-related patterns in sleep EEG. It is highly desirable to make the results of assessment most accurate and reliable. However, the expert analysis is limited in capability to provide the estimate of uncertainty in assessments. Bayesian inference has been shown providing the most accurate estimates of uncertainty by using Markov Chain Monte Carlo (MCMC) integration over the posterior distribution. The use of MCMC enables to approximate the desired distribution by sampling the areas of interests in which the density of distribution is high. In practice, the posterior distribution can be multimodal, and so that the existing MCMC techniques cannot provide the proportional sampling from the areas of interest. The lack of prior information makes MCMC integration more difficult when a model parameter space is large and cannot be explored in detail within a reasonable time. In particular, the lack of information about EEG feature importance can affect the results of Bayesian assessment of EEG maturity. In this paper we explore how the posterior information about EEG feature importance can be used to reduce a negative influence of disproportional sampling on the results of Bayesian assessment. We found that the MCMC integration tends to oversample the areas in which a model parameter space includes one or more features, the importance of which counted in terms of their posterior use is low. Using this finding, we proposed to cure the results of MCMC integration and then described the results of testing the proposed method on a set of sleep EEG recordings.Citation
Schetinin, V. & Jakaite, L. (2012) 'Classification of newborn EEG maturity with bayesian averaging over decision trees', Expert Systems with Applications, 39 (10), pp.9340-9347.Publisher
ElsevierJournal
Expert Systems with ApplicationsAdditional Links
http://linkinghub.elsevier.com/retrieve/pii/S0957417412004538Type
ArticleLanguage
enISSN
0957-4174ae974a485f413a2113503eed53cd6c53
10.1016/j.eswa.2012.02.184
Scopus Count
The following license files are associated with this item: