Show simple item record

dc.contributor.authorConrad, Marcen_GB
dc.contributor.authorReplogle, Daniel R.en_GB
dc.date.accessioned2013-04-07T21:47:07Z
dc.date.available2013-04-07T21:47:07Z
dc.date.issued2002
dc.identifier.citationConrad, M., Replogle D., (2002) 'Nontrivial Galois module structure of cyclotomic fields'. Mathematics of Computation, 72 (242), pp.891 -899en_GB
dc.identifier.issn0025-5718
dc.identifier.doi10.1090/S0025-5718-02-01457-6
dc.identifier.urihttp://hdl.handle.net/10547/279224
dc.description.abstractWe say a game Galois field extension L/K with Galois group G has trivial Galois module structure if the rings of integers have the property that OL is a free OK[G]-module. The work of Greither, Replogle, Rubin, and Srivastav shows that for each algebraic number field other than the rational numbers there will exist infinitely many primes l so that for each there is a tame Galois field extension of degree l so that L/K has nontrivial Galois module structure. However, the proof does not directly yield specific primes l for a given algebraic number field K. For K any cyclotomic field we find an explicit l so that there is a tame degree l extension L/K with nontrivial Galois module structure.
dc.language.isoenen
dc.publisherAmerican Mathematical Societyen_GB
dc.relation.urlhttp://www.ams.org/journal-getitem?pii=S0025-5718-02-01457-6en_GB
dc.subjectcyclotomic unitsen_GB
dc.subjectGalois module structureen_GB
dc.titleNontrivial Galois module structure of cyclotomic fieldsen
dc.typeArticleen
dc.contributor.departmentSouthampton Instituteen_GB
dc.contributor.departmentCollege of Saint Elizabeth, New Jerseyen_GB
dc.identifier.journalMathematics of Computationen_GB
html.description.abstractWe say a game Galois field extension L/K with Galois group G has trivial Galois module structure if the rings of integers have the property that OL is a free OK[G]-module. The work of Greither, Replogle, Rubin, and Srivastav shows that for each algebraic number field other than the rational numbers there will exist infinitely many primes l so that for each there is a tame Galois field extension of degree l so that L/K has nontrivial Galois module structure. However, the proof does not directly yield specific primes l for a given algebraic number field K. For K any cyclotomic field we find an explicit l so that there is a tame degree l extension L/K with nontrivial Galois module structure.


Files in this item

Thumbnail
Name:
0201322v1.pdf
Size:
127.2Kb
Format:
PDF
Description:
Full article

This item appears in the following Collection(s)

Show simple item record