Show simple item record

dc.contributor.authorGobel, Rüdigeren_GB
dc.contributor.authorGoldsmith, Brendanen_GB
dc.contributor.authorKolman, Orenen_GB
dc.date.accessioned2013-04-07T16:27:07Z
dc.date.available2013-04-07T16:27:07Z
dc.date.issued2009
dc.identifier.citationGobel, R.; Goldsmith, B. and Kolman, O. (2009) 'On modules which are self-slender', Houston Journal of Mathematics 35 (3) .en_GB
dc.identifier.issn0362-1588
dc.identifier.urihttp://hdl.handle.net/10547/279172
dc.description.abstractThis paper is an examination of the dual of the fundamental isomorphism relating homomorphism groups involving direct sums and direct products over arbitrary index sets. We prove that for every cardinal μ, with μ ℵ0 = μ, there exists a non-slender self-slender self-small group of cardinality μ+.
dc.description.sponsorshipGerman-Israeli Foundation for Scientific Research & Developmenten_GB
dc.language.isoenen
dc.publisherUniversity of Houstonen_GB
dc.relation.urlhttp://arrow.dit.ie/scschmatart/27/en_GB
dc.relation.urlhttp://www.math.uh.edu/~hjm/Vol35-3.html
dc.subjecthomological algebraen_GB
dc.subjecte-ringsen_GB
dc.subjectslendernessen_GB
dc.subjectself–smallen_GB
dc.subjecthomomorphism groupsen_GB
dc.titleOn modules which are self-slenderen
dc.typeArticleen
dc.contributor.departmentUniversitat Duisberg Essenen
dc.contributor.departmentDublin Institute of Technologyen_GB
dc.contributor.departmentUniversite de Caenen
dc.identifier.journalHouston Journal of Mathematicsen_GB
html.description.abstractThis paper is an examination of the dual of the fundamental isomorphism relating homomorphism groups involving direct sums and direct products over arbitrary index sets. We prove that for every cardinal μ, with μ ℵ0 = μ, there exists a non-slender self-slender self-small group of cardinality μ+.


Files in this item

Thumbnail
Name:
On modules which are self-slen ...
Size:
238.7Kb
Format:
PDF
Description:
Full-text article

This item appears in the following Collection(s)

Show simple item record