Computational analysis of phosphopeptide binding to the polo-box domain of the mitotic kinase PLK1 using molecular dynamics simulation.
Authors
Huggins, David J.McKenzie, Grahame J.
Robinson, Daniel D.
Narváez, Ana J.
Hardwick, Bryn
Roberts-Thomson, Meredith
Venkitaraman, Ashok R.
Grant, Guy H.
Payne, Mike C.
Affiliation
University of CambridgeIssue Date
2010-08-12
Metadata
Show full item recordAbstract
The Polo-Like Kinase 1 (PLK1) acts as a central regulator of mitosis and is over-expressed in a wide range of human tumours where high levels of expression correlate with a poor prognosis. PLK1 comprises two structural elements, a kinase domain and a polo-box domain (PBD). The PBD binds phosphorylated substrates to control substrate phosphorylation by the kinase domain. Although the PBD preferentially binds to phosphopeptides, it has a relatively broad sequence specificity in comparison with other phosphopeptide binding domains. We analysed the molecular determinants of recognition by performing molecular dynamics simulations of the PBD with one of its natural substrates, CDC25c. Predicted binding free energies were calculated using a molecular mechanics, Poisson-Boltzmann surface area approach. We calculated the per-residue contributions to the binding free energy change, showing that the phosphothreonine residue and the mainchain account for the vast majority of the interaction energy. This explains the very broad sequence specificity with respect to other sidechain residues. Finally, we considered the key role of bridging water molecules at the binding interface. We employed inhomogeneous fluid solvation theory to consider the free energy of water molecules on the protein surface with respect to bulk water molecules. Such an analysis highlights binding hotspots created by elimination of water molecules from hydrophobic surfaces. It also predicts that a number of water molecules are stabilized by the presence of the charged phosphate group, and that this will have a significant effect on the binding affinity. Our findings suggest a molecular rationale for the promiscuous binding of the PBD and highlight a role for bridging water molecules at the interface. We expect that this method of analysis will be very useful for probing other protein surfaces to identify binding hotspots for natural binding partners and small molecule inhibitors.Citation
Huggins, D. et al (2010) 'Computational analysis of phosphopeptide binding to the polo-box domain of the mitotic kinase PLK1 using molecular dynamics simulation', PLoS computational biology 6 (8)Journal
PLoS computational biologyPubMed ID
20711360Type
ArticleLanguage
enISSN
1553-7358ae974a485f413a2113503eed53cd6c53
10.1371/journal.pcbi.1000880
Scopus Count
Collections
The following license files are associated with this item:
Related articles
- Rational Molecular Design of Potent PLK1 PBD Domain-binding Phosphopeptides Using Preferential Amino Acid Building Blocks.
- Authors: Mao XL, Wang KF, Zhu F, Pan ZH, Wu GM, Zhu HY
- Issue date: 2016 Aug
- Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates.
- Authors: Elia AE, Cantley LC, Yaffe MB
- Issue date: 2003 Feb 21
- Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1.
- Authors: Yun SM, Moulaei T, Lim D, Bang JK, Park JE, Shenoy SR, Liu F, Kang YH, Liao C, Soung NK, Lee S, Yoon DY, Lim Y, Lee DH, Otaka A, Appella E, McMahon JB, Nicklaus MC, Burke TR Jr, Yaffe MB, Wlodawer A, Lee KS
- Issue date: 2009 Aug
- Targeting subcellular localization through the polo-box domain: non-ATP competitive inhibitors recapitulate a PLK1 phenotype.
- Authors: McInnes C, Estes K, Baxter M, Yang Z, Farag DB, Johnston P, Lazo JS, Wang J, Wyatt MD
- Issue date: 2012 Aug
- Molecular and structural basis of polo-like kinase 1 substrate recognition: Implications in centrosomal localization.
- Authors: García-Alvarez B, de Cárcer G, Ibañez S, Bragado-Nilsson E, Montoya G
- Issue date: 2007 Feb 27