• Bayesian decision trees for predicting survival of patients: a study on the US National Trauma Data Bank

      Schetinin, Vitaly; Jakaite, Livija; Jakaitis, Janis; Krzanowski, Wojtek; University of Bedfordshire; University of Exeter (2013)
      Trauma and Injury Severity Score (TRISS) models have been developed for predicting the survival probability of injured patients the majority of which obtain up to three injuries in six body regions. Practitioners have noted that the accuracy of TRISS predictions is unacceptable for patients with a larger number of injuries. Moreover, the TRISS method is incapable of providing accurate estimates of predictive density of survival, that are required for calculating confidence intervals. In this paper we propose Bayesian in ference for estimating the desired predictive density. The inference is based on decision tree models which split data along explanatory variables, that makes these models interpretable. The proposed method has outperformed the TRISS method in terms of accuracy of prediction on the cases recorded in the US National Trauma Data Bank. The developed method has been made available for evaluation purposes as a stand-alone application.
    • Prediction of survival probabilities with Bayesian Decision Trees

      Schetinin, Vitaly; Jakaite, Livija; Krzanowski, Wojtek; University of Bedfordshire; University of Exeter (Elsevier, 2013)
      Practitioners use Trauma and Injury Severity Score (TRISS) models for predicting the survival probability of an injured patient. The accuracy of TRISS predictions is acceptable for patients with up to three typical injuries, but unacceptable for patients with a larger number of injuries or with atypical injuries. Based on a regression model, the TRISS methodology does not provide the predictive density required for accurate assessment of risk. Moreover, the regression model is difficult to interpret. We therefore consider Bayesian inference for estimating the predictive distribution of survival. The inference is based on decision tree models which recursively split data along explanatory variables, and so practitioners can understand these models. We propose the Bayesian method for estimating the predictive density and show that it outperforms the TRISS method in terms of both goodness-of-fit and classification accuracy. The developed method has been made available for evaluation purposes as a stand-alone application.