• Adaptive bees algorithm : bioinspiration from honeybee foraging to optimize fuel economy of a semi-track air-cushion vehicle

      Xu, Shuo; Yu, Fan; Luo, Zhe; Ji, Ze; Pham, Duc Truong; Qiu, Renxi; Shanghai Jiao Tong University; Cardiff University (Oxford University Press, 2011-01-04)
      This interdisciplinary study covers bionics, optimization and vehicle engineering. Semi-track air-cushion vehicle (STACV) provides a solution to transportation on soft terrain, whereas it also brings a new problem of excessive fuel consumption. By mimicking the foraging behaviour of honeybees, the bioinspired adaptive bees algorithm (ABA) is proposed to calculate its running parameters for fuel economy optimization. Inherited from the basic algorithm prototype, it involves parallel-operated global search and local search, which undertake exploration and exploitation, respectively. The innovation of this improved algorithm lies in the adaptive adjustment mechanism of the range of local search (called ‘patch size’) according to the source and the rate of change of the current optimum. Three gradually in-depth experiments are implemented for 143 kinds of soils. First, the two optimal STACV running parameters present the same increasing or decreasing trend with soil parameters. This result is consistent with the terramechanics-based theoretical analysis. Second, the comparisons with four alternative algorithms exhibit the ABA's effectiveness and efficiency, and accordingly highlight the advantage of the novel adaptive patch size adjustment mechanism. Third, the impacts of two selected optimizer parameters to optimization accuracy and efficiency are investigated and their recommended values are thus proposed.
    • Automation in handling uncertainty in semantic-knowledge based robotic task-planning by using Markov Logic Networks

      Al-Moadhen, Ahmed; Packianather, Michael; Setchi, Rossi; Qiu, Renxi (Elsevier, 2014-09-13)
      Generating plans in real world environments by mobile robot planner is a challenging task due to the uncertainty and environment dynamics. Therefore, task-planning should take in its consideration these issues when generating plans. Semantic knowledge domain has been proposed as a source of information for deriving implicit information and generating semantic plans. This paper extends the Semantic-Knowledge Based (SKB) plan generation to take into account the uncertainty in existing of objects, with their types and properties, and proposes a new approach to construct plans based on probabilistic values which are derived from Markov Logic Networks (MLN). An MLN module is established for probabilistic learning and inferencing together with semantic information to provide a basis for plausible learning and reasoning services in supporting of robot task-planning. In addition, an algorithm has been devised to construct MLN from semantic knowledge. By providing a means of modeling uncertainty in system architecture, task-planning serves as a supporting tool for robotic applications that can benefit from probabilistic inference within a semantic domain. This approach is illustrated using test scenarios run in a domestic environment using a mobile robot.
    • Both antireflection and superhydrophobicity structures achieved by direct laser interference nanomanufacturing

      Wang, Dapeng; Wang, Zuobin; Zhang, Ziang; Yue, Yong; Li, Dayou; Qiu, Renxi; Maple, Carsten; University of Bedfordshire; Changchun University of Science and Technology; Xi'an Jiaotong-Liverpool University (American Institute of Physics (AIP), 2014)
      Inspired by nature, a number of techniques have been developed to fabricate the bionic structures of lotus leaves and moth eyes in order to realize the extraordinary functions of self-cleaning and antireflection. Compared with the existing technologies, we present a straightforward method to fabricate well-defined micro and nano artificial bio-structures in this work. The proposed method of direct laser interference nanomanufacturing (DLIN) takes a significant advantage of high efficiency as only a single technological procedure is needed without pretreatment, mask, and pattern transfer processes. Meanwhile, the corresponding structures show both antireflection and superhydrophobicity properties simultaneously. The developed four-beam nanosecond laser interference system configuring the TE-TE-TE-TE and TE-TE-TE-TM polarization modes was set up to generate periodic micro cone and hole structures with a huge number of nano features on the surface. The theoretical and experimental results have shown that the periodic microcone structure exhibits excellent properties with both a high contact angle (CA = 156.3°) and low omnidirectional reflectance (5.9–15.4%). Thus, DLIN is a novel and promising method suitable for mass production of self-cleaning and antireflection surface structures.
    • The development of a semi-autonomous framework for personal assistant robots - SRS Project

      Qiu, Renxi; Ji, Ze; Chivarov, N.; Arbeiter, Georg; Weisshardt, Florian; Rooker, M.; Lopez, R.; Kronreif, G.; Spanel, M.; Li, Dayou; et al. (IGI Global, 2013)
      SRS is a European research project for building robust personal assistant robots using ROS (Robotic Operating System) and Care-O-bot (COB) 3 as the demonstration platform. A semi-autonomous framework has been developed in the project. It consists of an autonomous control structure and user interfaces that support the semi-autonomous operation. The control structure is divided into two parts. First, it has an automatic task planner, which initialises actions on the symbolic level. The planner produces proactive robotic behaviours based on updated semantic knowledge. Second, it has an action executive for coordination actions at the level of sensing and actuation. The executive produces reactive behaviours in well-defined domains. The two parts are integrated by fuzzy logic based symbolic grounding. As a whole, they represent the framework for autonomous control. Based on the framework, SRS user interfaces are integrated on top of COB’s existing capabilities to enable robust fetch and carry in unstructured environments.
    • Error factors affecting the result of Laser Interference Lithography

      Zhang, Jin; Jiang, Shilei; Tan, Chunlei; Wang, Zuobin; Li, Dayou; Yue, Yong; Qiu, Renxi; Sun, Guobin; Yang, Lihong; Wang, Sanlong; et al. (IEEE, 2013-08)
      Laser Interference Lithography (LIL) techniques enable quantitative generation of periodic structures such as array of holes, dots and lines, which are the intrinsic structure in some optical functional material. In this paper, the most common errors factors that could affect the result of laser interference lithography were presented. The methods to enhance the quality of patterns of LIL also have been introduced.
    • Fuzzy logic based symbolic grounding for best grasp pose for homecare robotics

      Liu, Beisheng; Li, Dayou; Yue, Yong; Maple, Carsten; Gu, Shuang; Qiu, Renxi; University of Bedfordshire (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2012)
      Symbolic grounding in unstructured environments remains an important challenge in robotics [7]. Homecare robots are often required to be instructed by their human users intuitively, which means the robots are expected to take highlevel commands and execute corresponding tasks in a domestic environment. High-level commands are represented with symbolic terms such as “near” and “close” and, on the other hand, robots are controlled based on trajectories. The robots need to translate the symbolic terms to trajectories. In addition, domestic environment is unstructured where the same objects can be placed in different places over the time. This increases the difficulties in symbolic grounding. This paper presents a fuzzy logic based approach to symbolic grounding. In this approach, grounded concepts are modelled as fuzzy sets and the existing knowledge is used to deduce grounded values given real-time sensory inputs. Experiments results show that this approach works well in unstructured environment.
    • Fuzzy optimisation based symbolic grounding for service robots

      Liu, Beisheng; Li, Dayou; Qiu, Renxi; Yue, Yong; Maple, Carsten; Gu, Shuang; University of Bedfordshire (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2012)
      Symbolic grounding is a bridge between high-level planning and actual robot sensing, and actuation. Uncertainties raised by the unstructured environment make a bottleneck for integrating traditional artificial intelligence with service robotics. This paper presents a fuzzy logic based approach to formalise the grounding problems into a fuzzy optimization problem, which is robust to uncertainties. Novel techniques are applied to establish the objective function, to model fuzzy constraints and to perform fuzzy optimisation. The outcome is tested with a service robot fetch and carry task, where the fuzzy optimisation approach helps the robot to determine the most comfortable position (location and orientation) for grasping objects. Experimental results show that the proposed approach improves the robustness of the task implementation in unstructured environments.
    • Integrating robot task planner with common-sense knowledge base to improve the efficiency of planning

      Al-Moadhen, Ahmed; Qiu, Renxi; Packianather, Michael; Ji, Ze; Setchi, Rossi; Cardiff University (Elsevier, 2013)
      This paper presents a developed approach for intelligently generating symbolic plans by mobile robots acting in domestic environments, such as offices and houses. The significance of the approach lies in developing a new framework that consists of the new modeling of high-level robot actions and then their integration with common-sense knowledge in order to support a robotic task planner. This framework will enable interactions between the task planner and the semantic knowledge base directly. By using common-sense domain knowledge, the task planner will take into consideration the properties and relations of objects and places in its environment, before creating semantically related actions that will represent a plan. This plan will accomplish the user order. The robot task planner will use the available domain knowledge to check the next related actions to the current one and the action's conditions met will be chosen. Then the robot will use the immediately available knowledge information to check whether the plan outcomes are met or violated.
    • Integration of symbolic task planning into operations within an unstructured environment

      Qiu, Renxi; Noyvirt, Alexandre; Ji, Ze; Soroka, Anthony; Li, Dayou; Liu, Beisheng; Arbeiter, Georg; Weisshardt, Florian; Xu, Shuo (IGI Global, 2012)
      To ensure a robot capable of robust task execution in unstructured environments, task planners need to have a high-level understanding of the nature of the world, reasoning for deliberate actions, and reacting to environment changes. Proposed is a practical task planning approach that seamlessly integrating deeper domain knowledge, real time perception and symbolic planning for robot operation. A higher degree of autonomy under unstructured environment will be endowed to the robot with the proposed approach.
    • Robotic nanoassembly: current developments and challenges

      Wang, Zuobin; Li, Dayou; Zhang, Jin; Ji, Ze; Qiu, Renxi (Inderscience, 2011)
      Robotic nanoassembly is an emerging field that deals with the controlled manipulation, handling and assembly of atoms, molecules and nano objects by robots for manufacturing of nano structures, devices and systems. Nanoassembly is expected to have revolutionary applications in almost all the scientific and technological areas. This paper presents a general review of nanoassembly by robots considering its current developments and challenges. It discusses scanning probe-based 2D nanomanipulation, gripper-based 3D nanohandling, object-oriented nanoassembly and hybrid nanoassembly techniques, which are the main topics of interest in the field. The challenging issues in robotic nanoassembly are outlined together with the topics.
    • Superhydrophobic dual micro- and nanostructures fabricated by direct laser interference lithography

      Li, Wenjun; Wang, Zuobin; Wang, Dapeng; Zhang, Ziang; Zhao, Le; Li, Dayou; Qiu, Renxi; Maple, Carsten; University of Bedfordshire; Changchun University of Science and Technology (Society of Photo-optical Instrumentation Engineers (SPIE), 2014)
      A method for the fabrication of highly ordered superhydrophobic dual micro- and nanostructures on silicon by direct laser interference lithography (LIL) is presented. The method offers its innovation that the superhydrophobic dual micro- and nanostructures can be fabricated directly by controlling the process of four-beam laser interference and the use of hydrofluoric acid (HF) to wipe off the silica generated during the process. Different laser fluences, exposure durations, and cleanout times have been investigated to obtain the optimum value of the contact angle (CA). The superhydrophobic surface with the CA of 153.2 deg was achieved after exposure of 60 s and immersion in HF with a concentration of 5% for 3 min. Compared with other approaches, it is a facile and efficient method with its significant feature for the macroscale fabrication of highly ordered superhydrophobic dual micro- and nanostructures on silicon.
    • Towards automated task planning for service robots using semantic knowledge representation

      Ji, Ze; Qiu, Renxi; Noyvirt, Alex; Soroka, Anthony; Packianather, Michael; Setchi, Rossi; Li, Dayou; Xu, Shuo; Cardiff University; University of Bedfordshire; et al. (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2012)
      Automated task planning for service robots faces great challenges in handling dynamic domestic environments. Classical methods in the Artificial Intelligence (AI) area mostly focus on relatively structured environments with fewer uncertainties. This work proposes a method to combine semantic knowledge representation with classical approaches in AI to build a flexible framework that can assist service robots in task planning at the high symbolic level. A semantic knowledge ontology is constructed for representing two main types of information: environmental description and robot primitive actions. Environmental knowledge is used to handle spatial uncertainties of particular objects. Primitive actions, which the robot can execute, are constructed based on a STRIPS-style structure, allowing a feasible solution (an action sequence) for a particular task to be created. With the Care-O-Bot (CoB) robot as the platform, we explain this work with a simple, but still challenging, scenario named “get a milk box”. A recursive back-trace search algorithm is introduced for task planning, where three main components are involved, namely primitive actions, world states, and mental actions. The feasibility of the work is demonstrated with the CoB in a simulated environment.
    • User-centered design of a dynamic-autonomy remote interaction concept for manipulation-capable robots to assist elderly people in the home

      Mast, Marcus; Burmester, Michael; Kruger, Katja; Fatikow, Sascha; Arbeiter, Georg; Graf, Birgit; Kronreif, Gernot; Pigini, Lucia; Facal, David; Qiu, Renxi; et al. (2012-08-01)
      In this article, we describe the development of a human-robot interaction concept for service robots to assist elderly people in the home with physical tasks. Our approach is based on the insight that robots are not yet able to handle all tasks autonomously with sufficient reliability in the complex and heterogeneous environments of private homes. We therefore employ remote human operators to assist on tasks a robot cannot handle completely autonomously. Our development methodology was user-centric and iterative, with six user studies carried out at various stages involving a total of 241 participants. The concept is under implementation on the Care-O-bot 3 robotic platform. The main contributions of this article are (1) the results of a survey in form of a ranking of the demands of elderly people and informal caregivers for a range of 25 robot services, (2) the results of an ethnography investigating the suitability of emergency teleassistance and telemedical centers for incorporating robotic teleassistance, and (3) a user-validated human-robot interaction concept with three user roles and corresponding three user interfaces designed as a solution to the problem of engineering reliable service robots for home environments.