• Both antireflection and superhydrophobicity structures achieved by direct laser interference nanomanufacturing

      Wang, Dapeng; Wang, Zuobin; Zhang, Ziang; Yue, Yong; Li, Dayou; Qiu, Renxi; Maple, Carsten; University of Bedfordshire; Changchun University of Science and Technology; Xi'an Jiaotong-Liverpool University (American Institute of Physics (AIP), 2014)
      Inspired by nature, a number of techniques have been developed to fabricate the bionic structures of lotus leaves and moth eyes in order to realize the extraordinary functions of self-cleaning and antireflection. Compared with the existing technologies, we present a straightforward method to fabricate well-defined micro and nano artificial bio-structures in this work. The proposed method of direct laser interference nanomanufacturing (DLIN) takes a significant advantage of high efficiency as only a single technological procedure is needed without pretreatment, mask, and pattern transfer processes. Meanwhile, the corresponding structures show both antireflection and superhydrophobicity properties simultaneously. The developed four-beam nanosecond laser interference system configuring the TE-TE-TE-TE and TE-TE-TE-TM polarization modes was set up to generate periodic micro cone and hole structures with a huge number of nano features on the surface. The theoretical and experimental results have shown that the periodic microcone structure exhibits excellent properties with both a high contact angle (CA = 156.3°) and low omnidirectional reflectance (5.9–15.4%). Thus, DLIN is a novel and promising method suitable for mass production of self-cleaning and antireflection surface structures.
    • Effect of pulse repetition rate on silicon wafer modification by four-beam laser interference

      Zhao, Le; Wang, Zuobin; Li, Wenjun; Yu, M.; Zhang, Z; Xu, J.; Yu, Y.; Weng, Z.; Li, S; Maple, Carsten; et al. (IEEE, 2013-08)
      This paper discusses the effect of pulse repetition rates on silicon wafer modification by four-beam laser interference. In the work, four-beam laser interference was used to pattern single crystal silicon wafers for the fabrication of dots, and different laser pulse repetition rates were applied to the process in the air. The results were obtained from 10 laser exposure pulses with the single laser fluence of 283mJ/cm2, the pulse repetition rates were 1Hz, 5Hz and 10Hz, the laser wavelength was 1064nm and the pulse duration 7-9ns. The results have been observed using a scanning electron microscope (SEM) and optical microscope. They indicate that the laser pulse repetition rate has to be properly selected for the fabrication of the structures of dots using four-beam laser interference.
    • Effects of polarization on four-beam laser interference lithography

      Wang, Dapeng; Wang, Zuobin; Zhang, Ziang; Yue, Yong; Li, Dayou; Maple, Carsten; Changchun University of Science and Technology; University of Bedfordshire (American Institute of Physics, 2013)
      This paper demonstrates that polarization plays an important role in the formation of interference patterns, pattern contrasts, and periods in four-beam interference lithography. Three different polarization modes are presented to study the effects of polarization on four-beam laser interference based on theoretical analysis, simulations, and experiments. A four-beam laser interference system was set up to modify the silicon surface. It was found that the secondary periodicity or modulation was the result of the misaligned or unequal incident angles only in the case of the TE-TE-TM-TM mode. The resulting patterns have shown a good correspondence with the theoretical analysis and simulations.
    • Magnetic surface patterns made by non-destructive laser interference

      Hou, Yu; Wang, Zuobin; Song, Jiaojiao; Li, Dayou; Yue, Yong; Maple, Carsten; Changchun University of Science and Technology; University of Bedfordshire (IEEE, 2013-08)
      This paper presents a method to make magnetic surface patterns by non-destructive laser interference, and periodic magnetic fringes produced on magnetic material surfaces are investigated by magnetic force microscopy (MFM). Various thermal effects are obtained by two beam laser interference with different exposure times and pulse energies. The experimental results have shown that magnetic patterns can be made on magnetic materials by laser interference without any damage to the surfaces. The method provides a way for the rapid producing of magnetic marks or recording magnetic data in a large area on a magnetic material surface, and it could be useful for biological, material, optical, electronic and information engineering applications.
    • Superhydrophobic dual micro- and nanostructures fabricated by direct laser interference lithography

      Li, Wenjun; Wang, Zuobin; Wang, Dapeng; Zhang, Ziang; Zhao, Le; Li, Dayou; Qiu, Renxi; Maple, Carsten; University of Bedfordshire; Changchun University of Science and Technology (Society of Photo-optical Instrumentation Engineers (SPIE), 2014)
      A method for the fabrication of highly ordered superhydrophobic dual micro- and nanostructures on silicon by direct laser interference lithography (LIL) is presented. The method offers its innovation that the superhydrophobic dual micro- and nanostructures can be fabricated directly by controlling the process of four-beam laser interference and the use of hydrofluoric acid (HF) to wipe off the silica generated during the process. Different laser fluences, exposure durations, and cleanout times have been investigated to obtain the optimum value of the contact angle (CA). The superhydrophobic surface with the CA of 153.2 deg was achieved after exposure of 60 s and immersion in HF with a concentration of 5% for 3 min. Compared with other approaches, it is a facile and efficient method with its significant feature for the macroscale fabrication of highly ordered superhydrophobic dual micro- and nanostructures on silicon.