• Interactive deformable geometry maps

      Liu, Qiang; Prakash, Edmond C.; Srinivasan, Mandayam A. (2012-05-18)
    • Interactive out-of-core exploration of large volume datasets in VTK-based visualisation systems

      Agrawal, Anupam; Testi, Debora; Taddei, Fulvia; Viceconti, Marco; Dong, Feng; McFarlane, Nigel J.B.; Clapworthy, Gordon J.; Kohout, Josef (Eurographics, 2012-06-08)
    • Interactive view-dependent rendering over networks

      Zhi Zheng; Prakash, Edmond C.; Chan, T.K.Y. (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2008-05)
    • Interactive visualization of multiscale biomedical data: an integrated approach

      Testi, Debora; Clapworthy, Gordon J.; Aylward, S.; Frangi, A.; Christie, R.; University of Bedfordshire (BioVis, 2011-10)
    • Investigation of on-body Bluetooth transmission

      Ur-Rehman, Masood; Gao, Yue; Wang, Zhao; Zhang, J.; Alfadhl, Yasir; Chen, Xiaodong; Parini, Clive G.; Ying, Zhinong; Bolin, Thomas; Queen Mary, University of London; et al. (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2010)
      The development of communication devices, especially cellular phones has necessitated the advances of several portable and wearable technologies, such as Bluetooth headsets within wireless body area networks (WBAN). Such wearable devices use the human body as a communication channel; hence, a comprehensive understanding of the transmission mechanism between such devices is vital. This study presents an investigative study to characterise the electromagnetic transmission between a body-mounted Bluetooth headset antenna and a mobile phone handset antenna. Commercially used antennas have been used to study various factors affecting on-body communication links including handset-to-body separation and presence of blocking objects. A thorough numerical modelling, supported by the measurements, has been carried out to demonstrate the importance of surface waves in the on-body Bluetooth transmission.
    • License plate localization based on statistical measures of license plate features

      Boonsim, Noppakun; Prakoonwit, Simant; University of Bedfordshire (Association of Computer Electronics and Electrical Engineers, 2014-01)
      — License plate localization is considered as the most important part of license plate recognition system. The high accuracy rate of license plate recognition is depended on the ability of license plate detection. This paper presents a novel method for license plate localization bases on license plate features. This proposed method consists of two main processes. First, candidate regions extraction step, Sobel operator is applied to obtain vertical edges and then potential candidate regions are extracted by deploying mathematical morphology operations [5]. Last, license plate verification step, this step employs the standard deviation of license plate features to confirm license plate position. The experimental results show that the proposed method can achieve high quality license plate localization results with high accuracy rate of 98.26 %.
    • Light field geometry of a standard plenoptic camera

      Hahne, Christopher; Aggoun, Amar; Haxha, Shyqyri; Velisavljević, Vladan; Fernández, Juan Carlos Jácome; University of Bedfordshire (OSA, 2014)
      The Standard Plenoptic Camera (SPC) is an innovation in photography allowing for acquiring two-dimensional images focused at different depths, from a single exposure. Contrary to conventional cameras, the SPC consists of a micro lens array and a main lens projecting virtual lenses into object space. For the first time, the present research provides an approach to estimate the distance and depth of refocused images extracted from captures obtained by an SPC. Furthermore, estimates for the position and baseline of virtual lenses which correspond to an equivalent camera array are derived. On the basis of paraxial approximation, a ray tracing model employing linear equations has been developed and implemented using Matlab. The optics simulation tool Zemax is utilized for validation purposes. By designing a realistic SPC, experiments demonstrate that a predicted image refocusing distance at 3.5 m deviates by less than 11% from the simulation in Zemax, whereas baseline estimations indicate no significant difference. Applying the proposed methodology will enable an alternative to the traditional depth map acquisition by disparity analysis.
    • Low cost estimation of IQ imbalance for direct conversion transmitters

      Li, Wei; Zhang, Yue; Huang, Li-Ke; Cosmas, John; Maple, Carsten; Xiong, Jian; University of Bedfordshire (IEEE, 2014-06)
      A low cost frequency-dependent (FD) I/Q imbalance self-compensation scheme is investigated in this paper. The direct conversion transmitters are widely used in wireless systems. However, the unwanted image-frequencies and distortions are inevitably introduced into the direct conversion system. This problem is even severer in wideband systems. Therefore, the accurate estimation and compensation of I/Q imbalance is crucial. The current compensation method is based on external instruments or internal feedback path which introduces additional impairments and is expensive. This paper proposes a low cost FD I/Q imbalance self-IQ-demodulation based compensation scheme without using external calibration instruments. First, the impairments of baseband and RF components are investigated. Further, I/Q imbalance model is developed. Then, the proposed a self-IQ-demodulation based compensation scheme is investigated. The overall FD I/Q imbalance parameters are estimated by developing a self-IQ-demodulation algorithm. To realize this self-IQ-demodulation algorithm, this paper introduces minor modifications to the current power detector circuit and specially designed training signal. Afterwards, the estimated parameters are applied to the baseband equivalent compensator. This sophisticated algorithm guarantees low computation complexity and low cost. The compensation performance is evaluated in laboratory measurement
    • Multi-layer depth peeling by single-pass rasterisation for faster isosurface raytracing on GPUs

      Liu, Baoquan; Clapworthy, Gordon J.; Dong, Feng (Blackwell Publishing, 2010-06)
    • Multi-layer depth peeling via fragment sort

      Liu, Baoquan; Wei, Li-Yi; Xu, Ying-Qing; Wu, Enhua (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2009)
    • Multi-scale blind motion deblurring using local minimum

      Wang, Chao; Sun, Li-Feng; Chen, ZhuoYuan; Zhang, JianWei; Yang, ShiQiang; Tsinghua University; Hamburg University (Institute of Physics, 2010-01)
      Blind deconvolution, a chronic inverse problem, is the recovery of the latent sharp image from a blurred one when the blur kernel is unknown. Recent algorithms based on the MAP approach encounter failures since the global minimum of the negative MAP scores really favors the blurry image. The goal of this paper is to demonstrate that the sharp image can be obtained from the local minimum by using the MAP approach. We first propose a cross-scale constraint to make the sharp image correspond to a good local minimum. Then the cross-scale initialization, iterative likelihood update and the iterative residual deconvolution are adopted to trap the MAP approach in the desired local minimum. These techniques result in our cross-scale blind deconvolution approach which constrains the solution from coarse to fine. We test our approach on the standard dataset and many other challenging images. The experimental results suggest that our approach outperforms all existing alternatives.
    • Multimodal fusion of biomedical data at different temporal and dimensional scales

      Viceconti, Marco; Clapworthy, Gordon J.; Testi, Debora; Taddei, Fulvia; McFarlane, Nigel J.B. (ELSEVIER IRELAND LTD, 2011-06)
    • Non-linear beam tracing on a GPU

      Liu, Baoquan; Wei, Li-Yi; Yang, Xu; Ma, Chongyang; Xu, Ying-Qing; Guo, Baining; Wu, Enhua (Blackwell Publishing, 2011-12)
    • Novel moving target search algorithms for computer gaming

      Loh, Peter K. K.; Prakash, Edmond C. (Association for Computing Machinery (ACM), 2009-06)
    • Numerical modeling of inhaled charged aerosol deposition in human airways

      Koolpiruck, Diew; Prakoonwit, Simant; Balachandran, Wamadeva (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2004)
    • Object-based three-dimensional X-ray imaging

      Benjamin, Ralph; Prakoonwit, Simant; Matalas, I.; Kitney, R.I.; Imperial College of Science, Technology and Medicine (Kluwer Academic Publishers, 1996-11)
      A form of three-dimensional X-ray imaging, called Object 3-D, is introduced, where the relevant subject material is represented as discrete 'objects'. The surface of each object is derived accurately from the projections of its outline, and of its other discontinuities, in about ten conventional X-ray views, distributed in solid angle. This technique is suitable for many applications, and permits dramatic savings in radiation exposure and in data acquisition and manipulation. It is well matched to user-friendly interactive displays.
    • Occluded feature exploration for direct volume rendering

      Zhou, Zhiguang; Tao, Yubo; Lin, Hai; Dong, Feng; Clapworthy, Gordon J. (2012)
    • Octree rasterization: accelerating high-quality out-of-core GPU volume rendering

      Liu, Baoquan; Clapworthy, Gordon J.; Dong, Feng; Prakash, Edmond C.; University of Bedfordshire (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2012-08-10)
      We present a novel approach for GPU-based high quality volume rendering of large out-of-core volume data. By focusing on the locations and costs of ray traversal, we are able to significantly reduce the rendering time over traditional algorithms. We store a volume in an octree (of bricks); in addition, every brick is further split into regular macro-cells. Our solutions move the branch-intensive accelerating structure traversal out of the GPU raycasting loop and introduce an efficient empty-space culling method by rasterizing the proxy geometry of a view-dependent cut of the octree nodes. This rasterization pass can capture all of the bricks that the ray penetrates in a per-pixel list. Since the per-pixel list is captured in a front-to-back order, our raycasting pass needs only to cast rays inside the tighter ray segments. As a result, we achieve two levels of empty space skipping: the brick level and the macro-cell level. During evaluation and testing, this technique achieved 2 to 4 times faster rendering speed than a current state-of-the-art algorithm across a variety of data sets.
    • Omnidirectional Holoscopic 3D content generation using dual orthographic projection

      Swash, M.R.; Aggoun, Amar; Fatah, O. Abdul; Li, B.; Fernandez, Juan C. J.; Tsekleves, Emmanuel; Brunel University; University of Bedfordshire (IEEE, 2013-06)
      In recent years there has been a considerable amount of development work been made in the area of Three-Dimensional (3D) imaging systems and displays. Such systems have attracted the attention and have been widely consumed by both home and professional users in sectors such as entertainment and medicine. However, computer generated 3D content remains a challenge as the 3D scene construction requires contributions from thousands of micro images “also known as elemental images”. Rendering microlens images is very time-consuming because each microlens image is rendered by a perspective or orthographic pinhole camera in a computer generated environment. In this paper we propose and present the development of a new method to simplify and speed-up the rendering process in computer graphics. We also describe omnidirectional 3D image recoding using a two-layer orthographic camera. Results show that it's rendering performance makes it an ideal candidate for real-time/interactive 3D content visualization application(s).
    • Opacity volume based halo generation for enhancing depth perception

      Tao, Yubo; Lin, Hai; Dong, Feng; Clapworthy, Gordon J. (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2011-09)