• IMENSE: an e-infrastructure environment for patient specific multiscale data integration, modelling and clinical treatment

      Zasada, Stefan J.; Wang, Tao; Haidar, Ali; Liu, Enjie; Graf, Norbert; Clapworthy, Gordon J.; Manos, Steven; Coveney, Peter V. (Elsevier, 2012-09)
      Secure access to patient data and analysis tools to run on that data will revolutionize the treatment of a wide range of diseases, by using advanced simulation techniques to underpin the clinical decision making process. To achieve these goals, suitable e-Science infrastructures are required to allow clinicians and researchers to trivially access data and launch simulations. In this paper we describe the open source Individualized MEdiciNe Simulation Environment (IMENSE), which provides a platform to securely manage clinical data, and to perform wide ranging analysis on that data, ultimately with the intention of enhancing clinical decision making with direct impact on patient health care. We motivate the design decisions taken in the development of the IMENSE system by considering the needs of researchers in the ContraCancrum project, which provides a paradigmatic case in which clinicians and researchers require coordinated access to data and simulation tools. We show how the modular nature of the IMENSE system makes it applicable to a wide range of biomedical computing scenarios, from within a single hospital to major international research projects.
    • Immersive 3D holoscopic video system

      Aggoun, Amar; Tsekleves, Emmanuel; Swash, M.R.; Zarpalas, D.; Dimou, A.; Daras, P.; Nunes, P.; Soares, L.D.; Brunel University; University of Bedfordshire (IEEE, 2013-02)
      We demonstrated a 3D holoscopic video system for 3DTV application. We showed that using a field lens and a square aperture significantly reduces the vignetting problem associated with a relay system and achieves over 95 percent fill factor. The main problem for such a relay system is the nonlinear distortion during the 3D image capturing, which can seriously affect the reconstruction process for a 3D display. The nonlinear distortion mainly includes lens radial distortion (intrinsic) and microlens array perspective distortion (extrinsic). This is the task of future work. Our results also show that the SS coding approach performs better than the standard HEVC scheme. Furthermore, we show that search and retrieval performance relies on the depth map's quality and that the multimodal fusion boosts the retrieval performance.
    • Intelligent ray launching algorithm for indoor scenarios

      Lai, Zhihua; De La Roche, Guillaume; Bessis, Nik; Kuonen, Pierre; Clapworthy, Gordon J.; Zhou, Dibin; Zhang, Jie (SPOLECNOST PRO RADIOELEKTRONICKE INZENYRSTVI, CZECH TECHNICAL UNIVERSITY, DEPT OF ELECTROMAGNETIC FIELD, TECHNICKA 2, PRAHA, CZ-16627, CZECH REPUBLIC, 2011-06)
    • Interactive deformable geometry maps

      Liu, Qiang; Prakash, Edmond C.; Srinivasan, Mandayam A. (2012-05-18)
    • Interactive out-of-core exploration of large volume datasets in VTK-based visualisation systems

      Agrawal, Anupam; Testi, Debora; Taddei, Fulvia; Viceconti, Marco; Dong, Feng; McFarlane, Nigel J.B.; Clapworthy, Gordon J.; Kohout, Josef (Eurographics, 2012-06-08)
    • Interactive view-dependent rendering over networks

      Zhi Zheng; Prakash, Edmond C.; Chan, T.K.Y. (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2008-05)
    • Interactive visualization of multiscale biomedical data: an integrated approach

      Testi, Debora; Clapworthy, Gordon J.; Aylward, S.; Frangi, A.; Christie, R.; University of Bedfordshire (BioVis, 2011-10)
    • Investigation of on-body Bluetooth transmission

      Ur-Rehman, Masood; Gao, Yue; Wang, Zhao; Zhang, J.; Alfadhl, Yasir; Chen, Xiaodong; Parini, Clive G.; Ying, Zhinong; Bolin, Thomas; Queen Mary, University of London; et al. (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2010)
      The development of communication devices, especially cellular phones has necessitated the advances of several portable and wearable technologies, such as Bluetooth headsets within wireless body area networks (WBAN). Such wearable devices use the human body as a communication channel; hence, a comprehensive understanding of the transmission mechanism between such devices is vital. This study presents an investigative study to characterise the electromagnetic transmission between a body-mounted Bluetooth headset antenna and a mobile phone handset antenna. Commercially used antennas have been used to study various factors affecting on-body communication links including handset-to-body separation and presence of blocking objects. A thorough numerical modelling, supported by the measurements, has been carried out to demonstrate the importance of surface waves in the on-body Bluetooth transmission.
    • License plate localization based on statistical measures of license plate features

      Boonsim, Noppakun; Prakoonwit, Simant; University of Bedfordshire (Association of Computer Electronics and Electrical Engineers, 2014-01)
      — License plate localization is considered as the most important part of license plate recognition system. The high accuracy rate of license plate recognition is depended on the ability of license plate detection. This paper presents a novel method for license plate localization bases on license plate features. This proposed method consists of two main processes. First, candidate regions extraction step, Sobel operator is applied to obtain vertical edges and then potential candidate regions are extracted by deploying mathematical morphology operations [5]. Last, license plate verification step, this step employs the standard deviation of license plate features to confirm license plate position. The experimental results show that the proposed method can achieve high quality license plate localization results with high accuracy rate of 98.26 %.
    • Light field geometry of a standard plenoptic camera

      Hahne, Christopher; Aggoun, Amar; Haxha, Shyqyri; Velisavljević, Vladan; Fernández, Juan Carlos Jácome; University of Bedfordshire (OSA, 2014)
      The Standard Plenoptic Camera (SPC) is an innovation in photography allowing for acquiring two-dimensional images focused at different depths, from a single exposure. Contrary to conventional cameras, the SPC consists of a micro lens array and a main lens projecting virtual lenses into object space. For the first time, the present research provides an approach to estimate the distance and depth of refocused images extracted from captures obtained by an SPC. Furthermore, estimates for the position and baseline of virtual lenses which correspond to an equivalent camera array are derived. On the basis of paraxial approximation, a ray tracing model employing linear equations has been developed and implemented using Matlab. The optics simulation tool Zemax is utilized for validation purposes. By designing a realistic SPC, experiments demonstrate that a predicted image refocusing distance at 3.5 m deviates by less than 11% from the simulation in Zemax, whereas baseline estimations indicate no significant difference. Applying the proposed methodology will enable an alternative to the traditional depth map acquisition by disparity analysis.
    • Low cost estimation of IQ imbalance for direct conversion transmitters

      Li, Wei; Zhang, Yue; Huang, Li-Ke; Cosmas, John; Maple, Carsten; Xiong, Jian; University of Bedfordshire (IEEE, 2014-06)
      A low cost frequency-dependent (FD) I/Q imbalance self-compensation scheme is investigated in this paper. The direct conversion transmitters are widely used in wireless systems. However, the unwanted image-frequencies and distortions are inevitably introduced into the direct conversion system. This problem is even severer in wideband systems. Therefore, the accurate estimation and compensation of I/Q imbalance is crucial. The current compensation method is based on external instruments or internal feedback path which introduces additional impairments and is expensive. This paper proposes a low cost FD I/Q imbalance self-IQ-demodulation based compensation scheme without using external calibration instruments. First, the impairments of baseband and RF components are investigated. Further, I/Q imbalance model is developed. Then, the proposed a self-IQ-demodulation based compensation scheme is investigated. The overall FD I/Q imbalance parameters are estimated by developing a self-IQ-demodulation algorithm. To realize this self-IQ-demodulation algorithm, this paper introduces minor modifications to the current power detector circuit and specially designed training signal. Afterwards, the estimated parameters are applied to the baseband equivalent compensator. This sophisticated algorithm guarantees low computation complexity and low cost. The compensation performance is evaluated in laboratory measurement
    • Multi-layer depth peeling by single-pass rasterisation for faster isosurface raytracing on GPUs

      Liu, Baoquan; Clapworthy, Gordon J.; Dong, Feng (Blackwell Publishing, 2010-06)
    • Multi-layer depth peeling via fragment sort

      Liu, Baoquan; Wei, Li-Yi; Xu, Ying-Qing; Wu, Enhua (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2009)
    • Multi-scale blind motion deblurring using local minimum

      Wang, Chao; Sun, Li-Feng; Chen, ZhuoYuan; Zhang, JianWei; Yang, ShiQiang; Tsinghua University; Hamburg University (Institute of Physics, 2010-01)
      Blind deconvolution, a chronic inverse problem, is the recovery of the latent sharp image from a blurred one when the blur kernel is unknown. Recent algorithms based on the MAP approach encounter failures since the global minimum of the negative MAP scores really favors the blurry image. The goal of this paper is to demonstrate that the sharp image can be obtained from the local minimum by using the MAP approach. We first propose a cross-scale constraint to make the sharp image correspond to a good local minimum. Then the cross-scale initialization, iterative likelihood update and the iterative residual deconvolution are adopted to trap the MAP approach in the desired local minimum. These techniques result in our cross-scale blind deconvolution approach which constrains the solution from coarse to fine. We test our approach on the standard dataset and many other challenging images. The experimental results suggest that our approach outperforms all existing alternatives.
    • Multimodal fusion of biomedical data at different temporal and dimensional scales

      Viceconti, Marco; Clapworthy, Gordon J.; Testi, Debora; Taddei, Fulvia; McFarlane, Nigel J.B. (ELSEVIER IRELAND LTD, 2011-06)
    • Non-linear beam tracing on a GPU

      Liu, Baoquan; Wei, Li-Yi; Yang, Xu; Ma, Chongyang; Xu, Ying-Qing; Guo, Baining; Wu, Enhua (Blackwell Publishing, 2011-12)
    • Novel moving target search algorithms for computer gaming

      Loh, Peter K. K.; Prakash, Edmond C. (Association for Computing Machinery (ACM), 2009-06)
    • Numerical modeling of inhaled charged aerosol deposition in human airways

      Koolpiruck, Diew; Prakoonwit, Simant; Balachandran, Wamadeva (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2004)
    • Object-based three-dimensional X-ray imaging

      Benjamin, Ralph; Prakoonwit, Simant; Matalas, I.; Kitney, R.I.; Imperial College of Science, Technology and Medicine (Kluwer Academic Publishers, 1996-11)
      A form of three-dimensional X-ray imaging, called Object 3-D, is introduced, where the relevant subject material is represented as discrete 'objects'. The surface of each object is derived accurately from the projections of its outline, and of its other discontinuities, in about ten conventional X-ray views, distributed in solid angle. This technique is suitable for many applications, and permits dramatic savings in radiation exposure and in data acquisition and manipulation. It is well matched to user-friendly interactive displays.
    • Occluded feature exploration for direct volume rendering

      Zhou, Zhiguang; Tao, Yubo; Lin, Hai; Dong, Feng; Clapworthy, Gordon J. (2012)