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ABSTRACT

Due to importantly beneficial effects on physical and mental thealtl strong association wit
many rehabilitation programs, Physical Activity Recognition andhibdaing (PARM) have been
considered as a key paradigm for smart healthcare. Traditional mdtdroB&ARM focus on
controlled environments with the aim of increasing the tydeglemtifiable activity subjects
complete and improving recognition accuracy and system robustnessaog of novel body-worr
sensors or advanced learning algorithms. The emergence oteheet of Things (loT) enabling
technology is transferring PARM studies to open and connestedntrolled environments b
connecting heterogeneous cost-effective wearable devices and motsileLifdp is currently
known about whether traditional PARM technologies can tatiée new challenges of lo1
environments and how to effectively harness and improve tleebmdlogies. In an effort tc
understand the use of 10T technologies in PARM studies paper will give a systematic reviev
critically examining PARM studies from a typical 1oT layer-based matbge. It will firstly
summarize the statf-the-art in traditional PARM methodologies as used in the healthcaraidor
including sensory, feature extraction and recognition technigiespaper goes on to identil
some new research trends and challenges of PARM studiesl@Tthavironments, and discuss¢
some key enabling techniques for tackling them. Finally pifyier consider some of the success
case studies in the area and look at the possible futureriatiapplications of PARM in smar
healthcare.

© 2018 xxxxxxxx. Hosting by Elsevier B.V. All rightsgerved.

1. Introduction

A World Health Organization (WHO), survey of has
identified physical inactivity as the fourth leaglinsk factor
for global mortality causing an estimated 3.2 miilideaths.
Low levels of physical activity (PA) are detrimahto the

in healthcare costs. Due to these potentially heinkgffects,
and rendering assistant services such as fallstaetefor
older people and functional loss prevention in many
rehabilitation programs. By promoting, recognizimmnd
numerous studies over recognition and monitoringRM)
solutions for the last few decades have focusedesearch

health and functioning of older people [1], and ntayse

many chronic diseases [2], [3] such as diabetessityh
cancers, etc. Effective long-term observation of Ras
significance on promoting diagnosis and treatmérthese
chronic diseases, monitoring PA we can also pronaote

healthier lifestyle for elderly people and potelhfigrovide a

substantial reduction

aiming to deliver accurate and robust physicalvagtclinical
use. Recently, advances in Internet of Things fenabled
PARM as a key paradigm in many fields including Smar
Health, Smart Rehabilitation and Ambient Assistedirlg
(AAL).
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University, 3 Byrom St, Liverpool, L3 3AF, UK.

E-mail address: ruth1012@live.com (Jun Qi), p.yang@ljum.ac.uk'éng)



80000

70000

60000

50000

40000

30000

20000

loT healthcare

M |EEE Journals ® ACM Journals |IEEE Conference

o I| II |‘ I| I|
0 ull _

loT & PA

ACM Conference M Springer Journals M Science-Direct Journals
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Table 1. Activity categories and examples

Category | Subcategories Examples
Walking, jogging, climbing, descendir}
Aerobic exercise running, swimming
Transportation Driving, cycling, taking a bus
Simple  |Sedentary posturt Sitting, lying, standing, tilting
physical Transitional | Sit-to-stand, stande-walk, walkto-run,
activities activities runto-walk
Complex Cooking, brushing teeth, cleaning,
physical ADL eating, dressing, having a party
activities Ball sports Playing football, playing tennis

Traditionally, PARM studies focus on the discovefyPé patterns
or subject’s, accurate recognition of PA itself and robustness of
monitoring PA in a controlled environment, suclelascs or labs. These
are based on either designing standalone novelaweasensors to
achieve highly accurate recognition of human movese or
investigating advanced machine learning algoritfangaining features
from observed wearable sensory data from human posiions into
specific several activity types. Also, some reseens have investigated
how to attach wearable sensors for optimal accucadyave utilized
body area networks for energy-efficient PA moniigri While these
conventional statef-the-art PARM technologies enable achieving

PARM for recognition of 10-20 activity types witb@iracy ranging up

to 100%, one major challenge limiting their useésis and efficiency in
practice is that the emergence of Internet of Thi@igT) enabling
technology is transferring PARM studies from trewtial hubs of
healthcare to personalized, open and connectedtintted healthcare
environments [4]. This trend leads to a numbereyf @bstacles on the
adoption and utilization of existing PARM studiesdelivering holistic,
mobile, energy-efficient PARM solutions that prawidccurate state
detection and monitoring with moderate to comphaplementation in
an loT environment [4]6]. For instance, how to address the sheer
volume of information and the heterogeneous-devitsesl to capture
long-term PA information; how do we estimate and asuge
uncertainties of PA with varied human behavioutgyas; how do we
maintain the recognition accuracy of PA with the o§ moderate low-
cost wearable devices; etc. In this respect, Igtlnown about whether
traditional PARM solutions can address these issaed in particular
how to harness and improve their utilization in krivironments.

In an effort to better understand the advance ®f technologies in
PARM studies, this paper aims to provide a systematiew of current
researches of PARM from an loT layer-based perspedds shown in
Fig.1. We undertook an extensive literature review by examgin
relevant articles from major academic databaseSEIKplore, ACM,
Springer digital library and Science-Direct). Séaterms include the
key words ‘Internet of Things’, ‘Activity Recognition’, ‘Activity
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Fig. 2. Examining PARM from an loT layer based perspect

Table 2. loT-based layers and descriptions for PARM

Layers Description

Sensing layer The layer detects and collects signals from a varig

of sensors on human body or in environment.

Network layer The layer is responsible for transferring signal da
from sensing layer to analysis layer over wired,

wireless sensor or actuator networks,

Processing layer The layer processes and analyses raw signals, a

classifies/clusters into different PA types.

Application layer The layer provides applications that interacts wit

users.

Monitor’ and ‘Physical Activities’. In addition, we reviewed research
projects related to 10T, e- health, smart healéyazic, by searching from
EU, TSB and EPSRC funded projects. As a resultfoued a large
number of journal articles and conference papetee to PARM
studies and loT enabled healthcare respectivetyidemtified a number
of opportunities for future researchers. A main tdbation of this
review paper is that it is a first attempt to catége classic PAMA

technologies into an 10T architecture systematicafid it reviews the
current research on IoT, key enabling technologmajor PARM
applications in healthcare, and identifies resedrehds and current
challenges.

The rest of this paper is structured as followstiBe 2 presents the
description of the loT-based PARM architecture. i®ac8 and 4
demonstrates a variety of sensors and devicesinigkd sensing layer
and technologies in network layer respectivelyti8ad gives a PARM
implementation procedure ranging from data proogssp to PARM
algorithms in the analysis layer. Section 6 repsotsie applied cases in
application layer. Section 7 examines future trand3ARM area, and

section 8 is the conclusion.

2. loT-based PARM system ar chitecture

The concept of Internet of Things (loT) encompasaeset of
technologies that enable a wide range of devicdohjects to connect,
communicate and interact using networking technefginitially,
Radio Frequency Identification (RFID) technologysweonsidered a



fundamental solution to implement loT based systdmshe last few
years, advances in sensing technologies have pedmuobre cost-
effective wearable devices connecting in an loTiremment. The
concept of 10T based personalized healthcare sgsteas established
and become increasing popular. These systems use®t aof
interconnected devices to create an loT networlotgelto healthcare
assessment, patients.

Four loT-based layers are involved in the PARMaysstructure, as
shown in Figure 2 and Table 2. The general syst#lects personalized
health information from different wearable sensd®yices through a
middleware that provides the interoperability aadwsity needed in the
context of 10T for healthcare. These wearable dsviare capable of
recording multiple types of health data, includingg function [7], [8]
sleep duration [7], [9], heart rate [1@®]lood pressure [11] and user-
context information [12]Rapid development in microelectromechanical
(MEMS) accelerometer technology and global positigsiystem (GPS
has increased the accuracy of observing PA. Utdi#d T to monitor low
level PA has become popular, and easily accesgiblermal users.
Wired or wireless networks (e.g., Bluetooth, Wi-Fi ZigBee) are
normally adopted in the network layer. As the ratadusually contains
redundant information that needs to be filtereds iprocessed in the
analysis layer and sub-categorized into four phBses pre-processing
up to activity type classification/clustering. Dgi@e-processing is used
to clean the data and reduce dimensions, whicbudosequentlgivided
into equal or non-equal time windows for the speciécognition. Key
signal features using time-domain, frequency-doman other
techniques are collected in the feature extracfibase in order to
provide more useful and robust representation. Taetivity
classification/clustering step eventually categesithese features into
different basic PA types. Combination with usenteat information
(e.g., user’s location, object’s state) can be used to infer high-level daily
activities such as eatingooking or dressing listed in the table 1. The
application layer provides user interface to intenaith patients or

caregivers to present PARM results and treatments.

3. Sensing layer
The sensing layer is used for the identification of edlt§ and
gathering information from sensors, tags, etc. déwelopment of low-

cost and smailk-size wearable sensor such as inertial sensors (e.g

accelerator, gyroscope or barometric pressure sgrestd physiological
sensors (e.g., spirometer, skin temperature semstood pressure
cuff), as well as wearable devices (e.g., fithemsdbor mobile phone)
has facilitated the process of measuring attribrgfeded to individuals
and their soundings in recent years. Fig.3 presemt® typical wearable
devices. GPS localization, Bluetooth and so ombk@incorporated into

the devices. As physical inactivity is often a majsk factor for chronic

diseases, daily PARM with wearable sensors is biewvestigated by a
number of researchers. Table 3 shows a variety edrable sensor

categories.

3.1 On-body sensors

3.11 Inertial sensors

An accelerometer is a small-scale MEMS device th#téscurrent
leader for PARM, they are widely used for monitgrilynamic
activities. When distinguishing static posturesy.(elaying, standing,
sitting), it needs to be placed arspecific part of the body [13] and a
threshold or value has to be set to discriminagentfil4] Gyroscopes
are generally used as an additional method for unieas rotational
movements. Detecting behaviours like falling [15) Imeasuring
patient’s angular velocity of movement such as bending knees,
descending stairs [16], ascending stairs [12] oning [20]. Likewisea
Barometric pressure sensor, along with an acceksenis also useful
in monitoring stairs behaviours [21] and fall déi@e [22] owing to the
relationship between sensory readings and altithdiagnetic field
sensors can be placed close to the measuremetibioegad thus achieve
higher spatial resolution to detect a subjecdlirection. When
recognizing“‘watching TV”, for instance, a magnetometer can tell that
the subject is facing the direction of the teleuisiwhilst combining
accelerometers and indoor localization informati@3]. It is not
essential to use magnetic field sensors to detdititees measuring
altitudes or angles such as fall [8], [9].
3.1.2 Physiological sensors

Physiological these can be used for monitoringepédiin and out-
of-hospital conditions. They are ordinarily used iombination to
observe other types of medical health data. Ambege sensors, are
heart rate monitors such as Electrocardiogram (E@@¢h has been
used for PARM for healthy subjects [27] as welfaspatients [28] in
daily lives. Itis believed that there is a distirglationship between heart
rate and PA. For example, when a subject starferpeng intensive
activities such as running or swimming, their heate will increase.
Nevertheless, it is difficult for such sensors teqisely determine
activity transitions for a very short period as whe subject stops
running, his/her heart rate will remain the samelléor a while [29]. To
overcome this issue, special feature extractionhaukst have been

applied in some studies. This will be discusseskittion 5.

3.1.3 Wearable/mobile devices

Recently, many commercial wearable products and ilenob
applications have been developed for the long tezoording and
collection of personal lifelogging physical actjvitThe most famous
mobile apps, such as Moves [31], which is basedmartphone 3D
accelerometer data and GPS information allow tragkof user
movement activities including location, distanced aspeed. The

wearable products are often wristband devicesrdwird step counts



distance, and calories burnt. These wearable deem@municate with
a mobile phone via Bluetooth employing relevant melgipplications.
Also, smart watch and mobile phoneme now replacements for

conventional wearable sensors.

3.14 Discussion

Accelerometers, gyroscopes, barometric pressuresosenand
magnetic field sensardueto issues with their integration, are normally
used with accelerometers. Inertial sensors canttaehad over an
individual’s body [34]-[39]. Despite this many studies conclude that
multiple sensor fusion can achieve highly accuf@fe recognition
results [28], [35], while such methods are obtreisiuncomfortable,
impractical and expensive. Therefore, many studiese hased
applications with only one wearable sensor attacimeal specific part of
the body [373{44], such as the hip [16], [17], back [40], wii48], chest
[43], waist or thigh [14]. Some work has investeghtthe best
performance placement with various algorithms antiviies. For
example, Purwar et al [48] found that placementhenchest is better
than the wrist in fall detection. Others has naunexment for specific

placement. Khan et al [49] allowed subjects tognuaiccelerometer in

any pocket on thebody and achieved 94% accuracy in ambulation and

static posture recognition.

Although inertial sensors have made great prognebe last decade,
they have limited use for long-term activity moniig in a free living
environment, as even only a small single sensacla¢d on a specific
part of the body is still uncomfortable for permaheonitoring. On the
other hand, physiological datasets are rarely use®PARM as a
consequence of the time-delay and obscure sigaalrés, they do not
play a vital role but simply act as supplementsrertial sensors in static
and ambulatory activity detection, and almost reppeared as a single
sensor for discriminations of PA. Wearable and neobiévices have
proven popular among general users owing to theitapility and
relatively low cost. However, because of diversifylife pattern and
environmental impacts, personal PA data from imblisi wearable
device exhibits remarkable uncertainty in the ratanvironment such
as battery, capacity issues and placed positidms.r@sults are widely
divergent when the mobile phone is put in the padsket from
handbags. Particularly that inertial sensors ansitee to any changes
in position and orientation. Despite some studies training data from
different orientations [50] or positions [51], tiesue is not fully and
largely resolved. Therefore, validating of these d&a in longitudinal

healthcare cases is very challenging.

3.2 On-object sensors

Subject’s interaction with objects need to be assessed for composite
activity recognition like watching TV, preparingraeal or washing
clothes. For these purposes, low-cost, éasgstall on-object sensors

(e.g., environment sensors, binary sensors or R&i®pble to provide

this data in an unobtrusive and private way. Emvitental sensors are
used for measuring indoor environmental conditisinsh as humidity,
temperature and energy [52], [5Bfnary sensors can sense an object’s
state with a digit of 0 or 1, representing on/offen/close [53] . Indoor
Bluetooth,  Radiogferency
Identification (RFID) [57], [58] and outdoor loczdition such as GPS

[59], [60] can be used in information acquisititiney are effective for

localization  sensors including

complex activity recognition without using a langember ofon-object
sensors. RFID tags and readers to detect humact gligractions in the
matter of motion and touch [61}.uses wireless electromagnetic fields
to transfer data and can be, exploited as on-obgectsors for
automatically identifying and tracking tags attathe specific objects
[62], [63].

3.3 Discussion

In order to accurately capture complex PA in contaxare
environment, a majority of sensors are requirebetanstalled in each
object even on the cups and cans. The study inpig3fents hundreds of
on-object sensonmstalled in the laboratory. As such, maintenarasts
for such a large amount of sensors are fairly highthermore, large
number of sensors also suffer from potential issdesng data

acquisition including transmission errors, low battand asynchrony.

4. Network layer

The networking layer for PARM is responsible fonoecting all the
devices in the sensory layer together and allowieigonalized health
data to be collected, stored, transmitted, shardéggregated under 0T
infrastructures. Typically, this layer contains &levrange of concepts
and techniques, such as communication and locdgohnologies,
topologies, architecture, security and privacy, etc

Body Area Networks (BANs) are ad hoc sensor netwarkd tags
attached to an individual’s body, constituting inertial sensors, biological
sensors, RFID tags, etc.

0T networks cover a range of PARM use cases thade $oom a
single constraint sensor to dozens of cross-platfareal-time
technologies. There are numerous communicationogotg from
legacy, contemporary to emerging that govern tmsas and server
communication. This section is mainly with the netw stack, the
communication / transport layer.
4.1 Bluetooth

Bluetooth is a wireless technology standard forherging data
among devices within a short distance. It has lééely used in PARM
studies. Chen et al. [64] created a framework, MoGAwhich abstracts
all devices in the environment as a collectionnébimation managers,
information providers, and information consumersthwiseveral
communication interfaces for supporting ad-hoc IEB®.11 and
Bluetooth like networks.



Table 3. Sensor categories, examples and desasptio

Sensor

Sensor category| subcategories

Sensor examples

Description

On-body sensory Inertial sensors

Accelerometer
Gyroscopes
Pressure sensors

Magnetic field sensors

Measures linear acceleration of movement
Measures the angular rotational velocity
Measures object’s altitude

Measures location for higher spatial resolution

Location sensors

GPS

Tracks outdoor locations

Physiological sensor,

Blood pressure cuff
Electrocardiogram (ECG),
Spirometer
Electrooculography (EOG

Skin temperature sensor

Measures human systolic and diastolic blood pressure
Test and records the rhythm and electrical activity of the heart.
Measures respiration, flow rate and lung volume

Measures eye movement.

Measure subject temperature on surface of the skin

On-object sensor| Environment sensor

Thermometer
Hygrometer

Energy sensors

Measures indoor/outdoor temperature
Measures indoor/outdoor humidity

Measures object’s energy usage

Binary sensors

Window contact
Door contact
Light switch

Detects window open/close state
Detects door open/close state

Detects light on/off state

Remote control switch

Detects remote control on/off state

Location detectors Infra-red Detects human indoor localization
Active RFID Detects human indoor localization

RFID tags Detects objects individual interaction with

Tags NFC tags Detects objects individual interaction with

Table 4. Network protocols used in PARM

Traditional PARM loT Suit
Application Layer HTTP/FTP etc. CoAP
Transport Layer TCP/UPD UDP
Network Layer IPv4/IPv6 6LOWPAN

Link Layer IEEE 802.3 Ethernet

802.11 Wireless

IEEE 802.15.4e

4.2 Zigbee

The ZigBee protocol uses the 802.15.4 standardsarapable of data

rates of 250 kbps and operates in the 2.4 GHz émgyurange. Zigbee
allows encryption with 128-bit AES and works witbde up to 200
meters in range. Zigbee sensor networks applieBABM can be
referred in [65]

4.3 Near field communication (NFC)
NFC is based on the ISO/IEC 18092:2004 standaiuy irsductive

coupled devices at frequency centre of 13.56 MHawal short range to
communicate with a data rate of up to 424 kbps. lHF@vs automatic
storing and launching smartphone apps though tgppi NFC tag on
various objects [66]67].

4.4 Wireless local area networking (\W-Fi)

Wi-Fi is an IEEE 802.11 standard network. Wi-Fi ideato provide
indoor localizations for PARM using Received Sigiakngth Indicator
(RSSI) [68] as well as wireless transmission of §gnals among

sensors, mobile devices and servers [69].

4.5 Cellular

Mainly used for mobile phones GPRS/2G/3G/4G celliglaurrently
in use. Mobile phones are often used by researgbgbsas monitoring
devices, the multiple sensor nature of mobile phawed their direct
internet connection makes these devices espeaialjul in PARM

solutions. Examples can be seen in [@0d[71].
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Table 5 Comparison of popular wireless radio communication

technologies in PARM

Standar | Zigbee | Bluetoo | Wifi | NFC | Celul | RFID
d /802.15 | th ar
4 (4G)
Frequency | 868/915 | 2.4 - 25| 2.4, 5| 13.56 | 450 125
MHz, GHz GHz MHz MHz - | kHz-
2.4 GHz 2.6 2.45
GHz GHz
Data Rate | 250 723 Kbps | 11 - | 424 1Gbps | 40
Kbps 1730 | Kbps kbps
Mbps 640
kbps
Range 10 — | 50m 10 — | 20m 70km 30cm-
300m 100m 100m
Power Very Low High | Low High Low
Low (activ
e)
Battery Months | Days to| Hour | Days | Days Months
Life toyears | weeks s to to years
week
s

5. Processing layer
The processing layer stores and analyzes the sigf@mation
received from the network layer. Data pre-procegdenture extraction

and classification/clustering are the three mapsftor PARM.

5.1 Data pre-processing
511 Time-series segmentation

Temporal segmentation methods are typically used?f&RM. In
order to match PA patterns, sensor data sets oekd segmented to
accommodate consecutively activated sensors @tharsubject body
or in an environmental context. Such data setsbesken down in a
temporal series using time windows. Generally, iBages
segmentation methods applied in PARM are categongedwo types.
These are the sliding window method, and slidingdeiv and bottom-
up algorithm (SWAB) method [72] The sliding window, has
outstanding online performance in time point clisteand sub-series
clustering It is simple, intuitive and has thus become the rbosdly
used method for feature extractions and clasdificat[73}H80]. As
presented in Fig.4, the static sliding windows dbesl temporal length
with overlapping [73], [74] and non-overlappingtarsces [81][82] and
has been extensively adopted in most studies. topppte lengths of
nontoverlapping time window will split an activity it@nce with

continuous sensor signals and potentially causerriect recognition



outputs, whilea high percentage (e.g., 50% [74], 70%, 90% [83]) of
overlapping time windows would lead to excessiveetiand resource
consumption. Dynamic sliding window, aa nonfixed length
segmentation, enables extraction features whespgeific events are
detected via sensors [76], [77]. This tends to beeranergy-efficient for
the long-term activity monitoring. Heuristics, peddility approaches
[75] or user-specific thresholds [77], are commomelyploited for
dynamic length partition. The SWAB segmentationhodtis able to
produce better results but is more complicatedesincombines the
sliding window and bottom up approaches, allowhmyalgorithm to be
used online while keeping a global view of the ddtahas been
successfully applied in gesture identification watlcontinuous signal
stream from accelerometers, gyroscopes or ECG[83]}

—TWl—se—TW2—se—TW3—> «TWIlse—-TW2 TW3—
Timeline Timeline
@) (b)
+«—TW1l— «~TW1~»>
+«—TW2— —TW2——
+«—TW3—
Timeline Timeline
(©) IC

Fig.4. Time window segmentation (a) fix-sized namiapping; (b)
dynamic-sized non-overlapping; (c) fix-sized ovpgdang; (d)

dynamic-sized overlapping

5.1.2 Discussion

The key challenge of temporal segmentation is, tiodetermine
suitable window length at the runtime? Various miedi sizes in the
literature are based on different signal’s attributes or the application
environments. Short window size (e.g., 6.7s [74][43], 0.25s [73]
may improve the efficiency of classification algbms but dissipates too
much energy for current sensing devices. A longlaimsize (e.g., 30s
[89]), on the contrary, could conserve energy lkeads to bring more
redundant information; there also might be morentoae activity
leading to spurious features. However, almost fal éxisting work
focues on the online precise time series segments withh hi
classification accuracy, for life-logging PARM litad battery and
capacity cannot support frequent seconds/minutesebactivation of
such PARM algorithms.

5.2 Feature extraction

Feature extraction is a crucial procedure for PARMce any
classification method can be appropriately seledt¢de features are
robust. There are four major groups: time-domaiegudency domain,

biometrical domain and other methods, as showrabier6.

Table 6. Feature extraction category and extraetires/techniques

Category Extracted features/ techniques
Mean, standard deviation(SD), magnitude, covariance, vari
min, max, Range, correlation, integration, cross-correlation
mean square (RMS), signal magnitude area (SMA), sigr
Time domain magnitude vector (SMV)

Frequency |Coefficients sum, DC component, dominant frequency, sp

domain energy, entropy, spectrum centroid
Bio-metric

features Magnitude of change, trend of vital signs, cepstral featu

Feature Linear Discriminant Analysis (LDA), Principal Componen
selection Analysis (PCA)

5.2.1 Time domain features

Time domain features are mathematical and statistietrics that
present randomly continuous signal changes witle tiamd hence are
suitable for discriminating signals of inertial sers. The traditional
features extracted from sensor signals are medn y@dance [90],
standard deviation (SD) [46], root mean square (R[@$) covariance
[75] and energy [74]. The mean, a basic statistieric that measures
different kinds of sensor types, is used to smagghals. SD used to
provide stable signals. Variance describes thamtist to the expected
output and has been used to extract features from sigratgatic
postures, walking and running [90]. RMS is a quaciratean and is
commonly known as wavelet classification and igisioe analyse both
static and dynamic activity features [93]

5.2.2 Frequency domain features

These features are mostly extracted by using Rotransform (FT)
such as Fast Fourier Transform (FFT) and Discretgi€r Transform
(DFT). DC component [74], spectral energy [57],repy [31], [74]
[84]are the popular features. The DC componenthis average
acceleration value of the input signal series dyifie time window. The
energy is defined as the sum of the squared désaremponent
magnitudes of the signal. Entropy is the normalinéatmation entropy
of the FT components to distinguish different atég with similar
energy values [74]. These features are normallgitedl to specific
activities such as walking or running [4B14] and gestures [95]. On the
other hand, FT supplements frequency domain infibomadoes not
cover time information realting to where these fireucy components
occurred [96] Wavelet transformation (WT), consisting of low-
frequency components known as approximation and-teguency
components called the detail, takes advantagetbffacets in time and
frequency domainto analyse low frequency physiological sensors
signals like ECG [97], and deal with high frequeraxcelerometer
signals. Walking [98], descending, ascending stgdg, [86], static
postures [100] can all be detected using WT.
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Previous work suggests physiological sensors esblgmatic in

Biometrical features

PARM since traditional time and frequency domains/ehdheir
limitations in the bio-feature discrimination, esjadly in recognizing
transitional activities as ag discussed in Section 3. Some work,
however, disputes tBeconclusions and takes advantage of biometrical
features or self-defined thresholds to overcon®itisiue. For example,
Perriot et al. [40] proposed two new features dathagnitude of change
and trend of vital signs to extract effective imfation from ECG, skin
temperature, respiration rate and heart rate seipoals. The function
of the proposed features are defined time ser@sessand the extent of
changes of ECG signals [97]. In order to strengthenPARM model
and improve accuracy, Liu et al. [34] used a bioimetalled cepstral
features in conjunction with time-domain featunesf accelerometers
The cepstral features simplify the processing ofSE€ignals by pre-
processing and time segmentation. Formula (1) eefithe cepstral
feature extraction method, whefg(t) represents the cardiac activity
mean (CAM) which denotes the normal heartbeat sigpait) is the
additive motion artefact noise (MAN) dh activity, ands; ;(t) is the

ECG signal noise.
1,; () = 6;(t) + x;;(t) + & ;(t) 1)

5.2.4 Others

Linear Discriminant Analysis (LDA) is a linear ctafier that enables
us to reduce the data dimensions through projectimtaset onto a
lower-dimensional space with good class separpaplld1]. Formula (2
defines the optimal discrimination projection mattihereD,,, comes
from the maximum value of the ratio of within-classatter matrixy
andSy,, which can be used to discriminate transitiondivaies [42],
static postures, running, walking, ascending arsteleding stairs [33]
Principal Component Analysis (PCA), similar to LDAs also a
dimensionality reduction approach that allows vasisignal data to be
identified in the principal directions through comipg the eigenvector
of variance and covariance [32]. Mantyjarvi et{a2] investigated the
PCA, ICA and WT methods for different human ambolatactivities,
and concluded that the classification results ofAP&nd ICA
outperformed WT, and PCA and achieved the highestgretion rate.
PCA has an undesirable restriction that categordiedata into one
cluster. To overcome this restriction, Common Rpiaic Component
analysis (CPCA) has been proposed by Dolédec [t0#1] and adopted
by Yang et al. [93] for determining a set of simpl and complex PA.

pTspD _ T

Dope = argmaxg Er=ld;dy.dr) )

5.25
Although the general performance of frequency dorf@atures like

Discussion

FFT exceeds time domain features [103], they requiore algorithmic

complexity and have consumption limits for longatemonitoring due
to the battery and capacity issues [33]. This demktalso leads to the
weakness of their employment in transitional atiéisi (e.g., ligto-sit,
standto-walk). In contrast, traditional time domain feasiroutweigh
spectral methods in these circumstances [104]. rGitnaightforward
metrics that directly process acceleration sigeeas also levered in
transitional PARM. For example, Signal Magnitude@&i(SMA) [42]
[43], defined in formula (3) represents acceler@nsignals from three
axis x(i), y(i), z(i) respectively. Likewise, Signal Magnitude Vector
(SMV) shown in formula (4) provides a measurementhef degree of
activity intensity, where;, y; andz; are similarto (1). Apart from this,
static postures, ambulation and falling can alsobeadetected by using
SMA [42] and SMV metrics [43]. Furthermore, SMA eresblthe
possibility of changing positions and orientatidos mobile devices
[105]. Using simple time domain features (e.g., mean,iSB3ported to
achieve better outcomes than frequency domain risatin static
postures [106]. But this situation is restrictednultiple wearable
sensors, when it comes to a single sensor, thedrney domain features

play agreater role in such complicated scenarios.[91]
SMA = ZIL, (Ix @] + [y + 12D (©)
SMV = \/x? + y? + z} 4)

5.3 Classification and clustering

Classification and clustering are the two key téghes in machine
learning, corresponding to supervised and unsugeivialgorithms,
respectively. Semi-supervised learning is a classipervised learning
but makes use of unlabeled data for training. Medewlule-based
PARM approaches also appear frequently in someestutiable 5 lists
some typical methods and approaches
5.3.1

a) Artificial neural networks (ANNs) consist of @mtonnected

Supervised learning methods

artificial neurons structured into three partsuripyer, hidden layer and
output layer. The lines between the nodes indidhee flow of
information from one node to the next. FralRARM perspective, the
input layer normally comes from vectors of featuegtraction,
sequentially duplicated and sent to all of the eiddodes. One key issue
for ANNs is how to decideon the size of hidden layers for the
classification.A common approach is to try various sizes and then to
choose the model with the best cross-validatethasti of performance,
i.e., 5-fold

Compared witha higher number of neurons, fewer neurons are

cross validation [39] or 12-fold ceowalidation [38]
preferable as long as they can achieve a satisjacesults [39)]

Generally, PARM performance tends to be more atewith higher
numbers of hidden nodes [107]. The other issukasbise of activity
signals which often influence convergence of thelehdeading it to the
partial minimal value. By choosing a high learniage or integrating



algorithms of global optimum, i.e., genetic aldanmis it is possible to
avoid this issue. A drawback of ANNsthat of continuously selecting
nodes which is fairly time-consuming, and they regaimajority a large

training data set.

b) Hidden Markov Models (HMMs) are tools for repmesng
probability distribution ovea sequence of observations [108hey are
utilised to represent and learn the sequentiatemg@oral characteristics
of activity sequences using the Baum-Welch algorithimere activities
can be seen as the hidden states and the obseougile; this is sensor
data, and using the Viterbi algorithm in the redoigwy the stage to
calculate the maximum likelihood for each input teecUsing such
characteristics, HMMs are suitable for sequenceities like eating
[109]. Extensions of HMM include such approaches as tleedrtihical
Hidden Markov model (HHMM) [110] and the Switchingdden semi-
Markov model (S-HSMM) [111][112] and are carried out for the
purpose of increasing accuracy as well as meassoimg more complex
PA (e.g., working or cooking). The structure of thetensions is
normally divided into two layers: the top layertie Markov chain of
switching variables to detect simple physical diitis or gestures, while
parameters in the bottom layer combine the sulviiet from the top
layer to infer more complex activities [110]112]. In addition to the
requirement for prior knowledge of various facdtthe model, the most
overt limitation of HMMs is that they suffer from @hsequence
consistence of each activity; however, activitiegeal life would not
always be constantly in the same order because wvériety of

uncertainties.

c) Decision trees (DT) are multistage decision mglalgorithms
usedto classify data through a set of rules based on object’s attributes
[113]. A DT is built by using many leaf nodes and branchesich
represent outcomes of the binary decision and ifiag®n rules,
respectively. The rules can be set making use miadloknowledge and
features of the signals [114]5ome studies compared different classifiers
in Weka [115], a machine learning tool, showed that classifiers
achieved the best performance in more than 20 igesivincluding
reading, using computer, eating [53]74], walking, sitting, stretching,
vacuuming [74], static postures, transportation4]lldescending,
running [33] etc. Although DT has a higheffective learning method
compared to ANN or Bayesian models, a large tréle avlarge number

of branches, would be complex and time-consumirgydoess.

d) Support Vector Machine (SW) is a statisticajalthm for both
linear and non-linear classification by buildingr@del to assign new
data into one category or another [116]. For noedr classification, it
discriminates patterns and classes through cotistguseparating
boundaries in a high-dimensional feature space kétimel functions.

SVM is able to address the issue of either multiy@arable sensors data

fusion for precise observing of ambulation and clexpctivities [31]

or to process signals from a single inertial sensor detecting
ambulation and static postures [91]. ExtensionsS¥M are also
applicable to other situations. For instance, Ataget al. [117] exploited
Hardware-Friendly SVM to address hardware-limiteglides and Naik
et al. [118] presented twin SVM as suitable fondimmg EMG signals

to classify hand gestures.

e) Dynamic Time Warping (DTW) is an algorithm tina¢asures the
similarity of two time sequences. It aims at aligniwo sequences of
feature vectors by warping the time axis iteragivehtil an optimal
match between the two sequences is found [119]dEtence is denoted
as formula (5) and (6), whemrg, represents the warp path of time series
of i andj; D(i, j) is the shortest warp path. DTW has been applied in
few recognizing daily activities for elderly andsdbled people [119]
hand gestures [120], ascending and descending Elait].

Wi =W = (@0 <i+1, j<j <j+1) (5
D(,j) = Dist(i,j) + min[D(i — 1,/),D(i,j — 1), D(i = 1,j — 1)](6)

5.3.2 Unsupervised and Semi-supervised learning methods
Undoubtedly, supervised learning methods are ab&ehieve high
accuracy for PARA, but in practice, labelling eveample is expensive
and requies lots of effort. Also, some datasets provided by unknown
third parties may not have user annotations; ih sircumstances, some
workers have explored semi-supervised classification arsipervised
clustering for detectiorof PARM with only a few or without any

annotations.

a) Unsupervised methods:a few PARM studies investigated
unsupervised clustering methods such as K-measgecli#6]andthe
Gaussian Mixture Model (GMM) [46]122]. For example, Maekawa et
al. [123] proposed a probabilistic model employiBlyIM to calculate
the similarity of physical characteristics betweenew user and source
users and hence find the closest activity pattalshurafa et al. [46]
have pointed out that GMM is the better algorittompared to K-means
clustering when different levels of activity intégsare present which
would benefit intersubject variability. In additico these, minority
unsupervised learning methods aid the analysistefrhediary abundant
data resources available from the web rather tiveotty labelling raw
signals collected by the researchers. For exaniplébag-of-words”
model [124] is a text processing technique, whidbynh et al. [125]
employed in activity observation where a seriesafisor data were
converted into documentation for the inference iffieent types of
adivity. As such, sensor-based activity data is rdgd asa stream of
natural language terms to match objects for miniogels from the web
[126], [127].



b) Semi-supervised methods: are used to train d smmount of
labelled data and a large number of unlabeledidateder to improve
practical feasibility or to reduce cost. Co-tramiis a classic semi-
supervised setting that takes advantage of twaifilrs independently
to train and update data from using unlabeled sesnpithahigh degree
of confidence [128]. Stikic et al. [129] made u$amaccelerometer and
an infra-red sensor, compare different semi-supedviechniques, and
found that co-training and self-training methodstae most appropriate
methods for activity models. EBe-training is an improved version
proposed by Guan et al. [130] which is more flexifor PA data
classification, as compared to Co-training withyotwo separately
strong classifiers, E@o-training trains data as a whole without the
requirement for the confidence of the labellingeath classifier. The
study showed that with 40 wearable sensors dndinidual’s legs, the
results of static postures and ambulation obtaiwede better than
performance with supervised methods when 96Ptsamples are
unlabeled.

Apart from the well-known semi-supervised techngudhe
combination of supervision or semi-supervision vatflly supervied
algorithm isamther common approach for reducing labelled samples
For example, Hinh et al. [131] proposed a schemeaafixture of
unsupervised multiple eigenspaces with fully suiseds SVMs,
revealing that the recognition outcomes of stat&tpres, stair activities,
shaking hands and keyboard activities overweighgersised naive
Bayes and an unsupervised eigenspaces method wsngors on
different parts ofa subject’s body. Similarly, Mathie et al. [132]
presented the semi-supervised Virtual Evidence @aps(sVEB)
algorithm associated with unlabelled conditionalrgpy for training
supervised Conditional Random Fields (CRFs) frameaddition,
multi-instance learning and SVMs have been integiay Stikic et al.
[133] to deal with different coarse-grained labelsthout the
researcher’s supervision. The approach has been verified with activities

used by Bao et al. [74] and ultimately acquirechhigcognition rates.

5.3.3 Rule-based classification methods

Knowledge model construction and rule-based infezeare two
main stages for carrying out rule-based methods striucture of models
is built by a decision tree or ontology in a way that allows ey to
automatically process reasoning, whilst the infeeeis made of a set of
IF-THEN rules from training data or ontological instas.lt is used for
recognizing complex activities like activity idaly lives (ADLs) in

context-aware environment.

The knowledge model is expressedaiknowledge representation
language or data structure that enables the computexecute the
semantic rules. Knowledge-based approaches cafsssintax-based,

logic-baed and ontology-based approaches. Syntax-basedaabpr

make use of grammar that expesthe structure based on language
modelling. It follows a hierarchical structure containing two layers
which are HMMs (Hidden Markov Models) and BNs (Baxetworks)
on the bottom and CFGs (Context Free Grammarsherop. Logic-
based methods such as Description Logic (DL) dessrentities and
then make logical rules for high-level reasoningnghg knowledge-
based approaches, ontology is the most flexible witkly used
approach in IoT PARM due to its reusability, congtignal
completeness, decidability andstgractical reasoning algorithms. The
model is implemented in [81], [134]L36] for context-aware activity
recognition with the definition of concepts, prajes, and relationships,
as well as the support of instance-based reasoning.

W3C Web Ontology Language (OWL) is normally adoptadile-
based inference as it provides an expressive femdbr knowledge
modelling and representation that supports comipugtcompleteness,
decidability and practical reasoning algorithms.aclt object ina
context-aware environment can be regarded as a fau the
relationships are represented between activitiebjects for rule-based
reasoning in the inference engine. A situationteel@o the environment
is inferred through these relationships. Take “cooking” for example, the
activity includes environmental information, i.lcation is the kitchen,
objects are knife and pan, time period is an hour, and occupant’s simple

PA postures. The description logic (DL) is defirzsd

COOKING S VHASACTOR.(PERSON1 A PERSON2 ...) A
IHASLOCATION (KITCHEN) AVHASTIMEPERIODE(1HOUR) A
VHASUTENSILS(PAN) A VHASPOSTURE(STANDING) ~ (8)

Where the left of the arrow is termed conditions] #me right is
called conclusionsz refers to concept inclusion;refers to intersection
or conjunction of concepts; antis universal restriction. Formula (8)
equals tdDL-based rule defined as:

Person(?pl...?7p2), hasLocation(? kitchen),
hasTimePeriode(? Lhour), hasUtensils(? pan),
hasPosture(? standing) —

hasKitchenActivity(? pl...? p2,? cooking) 9)

Where the classes are defined as “Person”, “Location”,
“TimePeriode”, “Utensils”, “Posture” and “KitchenActivity”, the
relationships between an individual and environmenet defined as
“hasLocation”, “hasTimePeriode”, “hasUtensils”, “hasPostures” and
“hasKitchenActivity”.

(?p1...?p2) or (?kitchen), etc.) are for the purpose of conducting this

Instances defined inside brackets (e.g.,

reasoning.



5.4 Discussion

Supervised learning methods have mature and desmetical
foundations, providing reliable and stable restdtsPAMR, and thus
have been explored by a majority of studies. Whitegreatest weakness
is to requirea large number of samples and set appropriate cadsgor
ahead of time, statistical models like HMM must beined on
sufficiently massive samples. Also, each sampkupervised learning
needs to be precisely labelled, which is a tedang time-consuming
procedureif may take months depending on the size of the sanhe
comparison across a diverse range of experimerdsseenarios of
supervised learning, PARM investigations in unsuiged and semi-
supervised learning are relatively limited. Onfgw studies are devoted
to long-term PARM performance in naturalistic omsaaturalistic
environments by using multiple sensors [12583] or mobile phones
[137]. Aimost no studies on complex PA use contexére applications.
This is because of their intrinsic limitations waer big theoretical gap
still exists. Firstly, it is difficult to know thecorrect classification
boundaries when separating features into difféeéngroups. Secondly,
most studies assume that the numbers of clusteksasin, from
extending PA types. Setting unknown numbers oftefasften leads to
unstable consequences, so it is difficult to cdritre complexity of the
algorithm when trying different initial selectionslonetheless, semi-
supervised and unsupervised approaches are moi@ us@ractice
when there are many uncertaé®i Resolving the complexity and
accuracy of the algorithms, or adding more compbéx types is a
challenging topic that should be further invesggatOn the other hand,
rule-based inference has no requirement of angimgsamples. Using
Knowledge representation is unambiguous, sharafde@usable. The
significant drawback is that simple PA must be ggiped in advance
for further rule-based reasoning, yet rule-basethaus can hardly be
carried out if one lacks part of the conditionsinule. Likewise, it is
impossible to draw conclusions from rules in whioéreis missing data
from the sensing layer. If the acquired sensoridagmpty or inaccurate,
the rules would fail to be executed or producetjendsults. Errors often
occur due to sensor asynchronies or network tregssom in practice.
Thus, we suggest that rule-based systems still neede further

investigated.

6. Application layer

PARM has been applied in many healthcare relevietdsf from
activity tracking products (e.g., mobile app andable fithess banjls
to medical interventions (e.g., monitoring dailyitig activities for the
elderly and measuring chronic diseases). Some irgxisPARM
applications are introduced in this section fronpeats of fitness
tracking and monitoring, remote AAL, remote healtfonitoring,
diagnosis and rehabilitation, emergency alerts smdrt biomedical

sensing

6.1 Mobile fitness tracking

PARM in fitnessis a relatively mature and widely commercialized
technique that is designed for various groups afpfeefrom elderly
citizens, patients with chronic diseases to healleglentary and
physically active adultsThere are many popular mobile apps (i.e.,
Moves, Nike+ or Google fit) to fithess wearable dewi (i.e., Fitbit or
smart watches from some technology manufactureAsitomatic
tracking with simple PA such as walkimginning cycling, sleepingetc.
have beerintegrated into the public’s daily lives. On the other hand,
there are some trade-offs between PA types, thigqgosf devices and
the recognition accuracy. Existing customer devaggss are of limited
use due to a number of uncertainties such as pktterhthe mobile
devices on different parts of the body, batterysconmption, capacity or
manufacturer’s intrinsic settings, whilst PA types are quite narrow;
accuracy and precision are also challenged. Waskoban continually

carried out to improve all of these aspects

WISDM (Wireless Sensor Data Mining) [70] is a tygdiplatform that
detects PA based on Android phone sensors placed in one’s pocket. Data
is taken from the accelerometer, some repetitive (B4., walking
jogging etc.) are investigated using supervised trainiggrithms like
J48, logical regression, multilayer perceptron stnaw man. The result
exhibits that ascending and descending stairsharemist difficultly
recognized PA. M. Shoaib et al. [138] offers a caghpnsive review of
the possibilities in mobile phone PARM. The expenntests PA
performance (e.g., walking, running, etc.) in gosiaware, position-
unaware and personlised evaluation scenarios witelerometers
gyroscopes embeddeddismart phoneThe comparison of results using
some typical classifiers from signals from the upgen, wrist, belt and
right pocket through four groups of features exgddrom the time and
frequency domain in the three scenarios. Resuligesi that each sensor
takesa key role in different activities, and the positioosly have a

limited influence on classification results.

6.2 Ambient assisted living

AAL is appliedin a person’s daily living and working environment
to enable them to stay active longer, remain dyaiannected and live
independently into old age. It covers a range afeaech areas,
particularly in ADL recognitionwith an individual’s context and
situation AAL uses numerous ambient sensors and one or $evera
wearable sensors to understandndividual’s behaviours ira context-
aware environment. For instance, E. M. Tapia ef1&89] installed77
simple and low-cost environmethtsensor in occupants’ real homes for
ADL detection (i.e., cooking or eating). Naive Bsigd networks as a
PA classifier is implementddr ADL recognition. One noteworthy point
in the work is that the Experience Sampling Metfie8M) is used for



labelling binary sensor data especially in an utrotied living
environment, where self-reported diary entries &rspnal digital
assistant (PDA) can be triggered when a user pesBA in successive
time windows However, the study also reports thiat user’s attitude
towards ESM is that in daily life they are not vpositive responding to
the computer all the time and the monitoring daepaict on their
behaviours. Chernbumroong et al. [140] propose Bh Aecognition
method with feature combinations using small ang-déost wearable
sensors on the wrist. The data is collected fadree living environment
of elderly adults and points out that recogniticccuaacy can be
improved by combining data from temperature sensoraltimeter
sensors with accelerometear the SVM model. On the other hand,
dressing is not well detected withighmodel. IDSense [61] is a simple
move and touch indoor human-object interactioniagfpbns with only
RFID passive tags, developed byHanchuan et al The recognizing
procedure is in accordance to the changes in ty&qath layer signals of
the communication channel between the RFID readértlae passive
tags. With over 90% precision and recall, the wodicates RFID sensor

is a promising PA recognition tool.

6.3 Remote health monitoring

Special interest in home-based remote PARM is aftaignificance
to seniors or people with chronic diseases as agltaregivers and
physicians. PA patterns can reflect physical s@ftd®e patients and thus
recording such PA data will provide physicians aadegivers witha
useful method for accurate intervention and diaigndis work [43]
presents an early online remote monitoring systermpétients using
wireless 3D accelerometers by recognizing simple Btatic PA,
ambulation and abnormal PA, €ithe data processing and classification
procedures are carried out on a small waist-worthwimere the battery
and capacity would be constrained. Moreover, thesiflaation method
is implemented through the threshold of a straggithrd SMA
calculation. Hence the online system is low condiongcost, fast and
more useful imfree living environment. Hynes et al. [141] implethe
a smartphone-based long-term remote monitoringesysfor both
patients and caregiver that is capable to dispigyiastates (walking or
resting) levels (high, medium, low and inactive) and dunagiolhe PA
intensity is calculated from the Average Magnitierence Function
(AMDF) and evaluated on the placement of jacket; &etl trousers.

Resource consumptions are also considered in tHe wo

6.4 Diagnosis and rehabilitation

ICT technologies can be used to facilitate patiemts chronic
diseases through PA measurements in home or Hospitsonments

Compared with conventional questionnaires or maewalcise tests

(i.e., 6 minute walk test)objective PA assessments by using smart

monitoring and sensor technologies diagnosis and rehabilitation

systems will deliver particular information for @igians and carers and
thus potentially assist self-management wellbenegluce healthcare
cost, and avoid undesirable consequences, in anzgised manner for
different patients in accordance with a period efidviour analysis. Li
et al. [45] combine ECG and accelerometer datategorise PA for the
purpose of health assessment, rehabilitation aedvention. A special
feature extraction approach proposed in the intiegraf time domain
and cepstral domain from two sensor signals ressedgtthis illustrates
how to harness ECG in PARM. COPDTrainer [142] smaartphone-
based system of detection and monitoring of retatddn training
exercises (e.g., arm extension, elbow circle, étr.)COPD patients.
With a holster carrying the phone on the wrist ankle the system
provides real-time feedback regarding exerpisérmance and quality
to users through comparisoredfieaching model” and “trainingmodel”.
Classification of exercisés determined by features, speed and range of
motion This work demonstrates that recognition of trainingreises
can be a possible wayf using a single mobile phone. mHealthDroid
(Mobile Health Android) [143] is an open sourcenfiework designed
to facilitate the rapid and easy development ofrr@dical android
applications. The platform is able to collect détam connecting
heterogeneous commercial devices for both ambulatiol biomedical
signals. Healthcare interventions such as aledsgaidelines are also
available. The most important aspect is its exkglitgi which supports
diverse modes and ways to facilitate new systenmeimentation for
time and cost savings. For instance, mDurance [B4#ipbile healthcare
support system for assessment of trunk endurasdeyplemented in
terms of the core functionalities of mHealthDroid.

6.5 Emergency system

Monitoring abnormal activities is a major issue iealthcare for
elders particularly for those who are living indegently. Falls are the
greatest cause of emergency hospital admissionslder people, and
delaying treatment and care would significantiyluahce long-term
outcomes. Other abnormal activities such as gairige toilet too many
times at night can predict some diseases like klaoidlammation or
diabetes. Therefore, immediate emergency systemsssential to
monitor and detect such abnormal PA and thus awiderse

consequences.

Duong et al. [145] propose an effective schemeetead ADL and
abnormality through the use of two layers of switghhidden semi-
Markov model (S-HSMM) where an ADL is divided intosaries of
atomic PA combinations, whilst abnormality detecti® determined by
the likelihood of a parameter of the normal mod& abnormal model.
The study is a typical time sequence applicatiairessing complex PA
recognition and abnormality detection. Another falbnitoring and

rescue system is presented in [65] that employsatphonés built-in



sensors iran elder’s pocket and then information from GPS senato
rescue centre via 3G communication networks intiea once falling
occurs. The mechanism of fall detection is throwgtifying a series of
features in a sequential states and classifying thigh SVM. Also the
smartphone as the processing platform, well mantmesonsumption

issues and recognition rate.

6.6 Smart biomedical sensing

Biomedical sensing and monitoring technologies @iyificantly
supplementary roles in healthcare-related PARMs&hétal signs may
reflect human healthy states and thus are gradpatlyided by an
alternative approach with mobile device built-inrqmnalized self-
managementystems/apps. A variety of individuals’ conditions can be

handled with the smart monitoring and sensing teldgies such as

spirometry sensing [7$leep apnea detection [9] and breathing and heart

rate signs [1Q]etc. that may increase efficienof recognitions and
physical states in terms of the PA intensities fragapirations and
heartbeats. Vital-Radio [10] presents a wireless and multi-user
breathing and heartbeats monitor that can detéfetelnt type of PA in

smart environments. Similar research is also inyatd in the

WiBreathe [8] that is competent to contactless nreasespiration

during sleeping, reading, tying, watching TV anddydown. SpiroSmart
[7] shows a home-based spirometry by using low-owsiile phone app
with built-in microphone that user can exhale taharthe screen while
the microphone records data and send it to be &emluThe app may

also useful and commonplace for PA monitoring

7. Futureresearch trends

PARM using sensing technologies has huge potdeiadfitsin the
healthcare fielgdyet it is still broadly agreed that loT technolagae in
their infancy and face many challenges in succégsipplying them
into PARM due to further requires of free living véonment,
lifelogging monitoring scalability and extensibilitydevice cost and
various PA types, etc. Future work is requirectrass these challenges
and to examine the suitability of existing PARM teslogies to ensure

a good fit in the 10T environment.

7.1 Free living environment

It is reported in some work that the accuracy ofrBéognizers drops
dramatically from lab settings to free living emnments where there
are uncontrolled elements, such as short-batteryiipoor capacity of
devices and the requirement to run time-consumiaghme learning
algorithms. Another key issue is intersubject Valiigz, which means
different people perform the same behaviours diffdy. One reason is
due to various physical characteristics like agewaight. More
importantly, uncertainties normally occur from P#oés especially in

complex PA (i.e., ADL or playing balls). As a stione mathematical

model it is not hight effective when recognizing the changing time-
sequence-based atomic simple PA due to inflexikdéteps and
templates. Optimizing existing algorithms/framewsdgtatforms may

improve the stability in free living environment.

7.2 Lifelogging PA data from customer devices/apps

The effective collection of measures of PA in tleag term is
beneficial to interdisciplinary healthcare reseaoti collaboration from
clinicians, researchers and patients. However, ogvto heterogeneity
of connected devices and rapid change of diverfe patterns,
lifelogging PA information captured by third partgevices/apps
normally contains much uncertainty thereby limitthgir adoption for
healthcare studies. Many issues have been welksskefl in customer
devices/apps like storage, battery life and cagigeially mobile apps
are cheap and even free. Nevertheless, PA recognisults offered by
mobile devices are widely divergent so that malisgformation turn
to be scattered, erroneous and limited for healéheses. Thus, handling
with uncertainties and more effectively harnesshrgse data would be
greatly beneficial for PARM in a long term.

7.3 Low-cost device

Most previous work on implementing PARM
algorithms/frameworks with relatively precise andbte signalshave
used expensive devices/sensors for high recogrétomuracy. Cheap
mobile devices have also been obtained much aitetioth in the
research and industrial fields in recent years. @udeir low-cost and
portability, tracking esryone’s daily PA becomes possible. One of the
inevitable issues is resource consumption (i.emang and battery),
especially in online PARM systems where the usey raequire
immediate feedback. Most studies showed the accuradgr offline
settings where data is processed remotely and dekdirovided after.
Few mobile online systems have reported their caéatipmal demands.
Thus there might be a trade-off between recognifioouracy and
processing requirements to be further investigated.

7.4 Physical activity types

PARM has been studied over several decades, yega td PA types
that have not or have only been explored by a fiestiess exist. For
example, weight training exercises are essentiad Bt may bring
considerable healthcare benefits for various grofipgople. However,
research work on such PARMs are very limited anchature. Also,
some other fitness PA (i.e. playing basketball layipg tennis) are
rarely involved. Compared with repetitive movemefits., waking
running) or sedentary actions (i.e., standsiting), the activities are
relatively complex and thus require more effectiezhniques to
implement. Moreover, in the AAL field, there is ipasingly active

researchson concurrent and interleaved activity recognigdthough it



is still in its infancy and faces many challenges. For instanperson
may be cutting food while boiling water in an ADLoaking
Furthermore, multi-user and multi-activity recogmit and monitoring
also are in difficulty at the moment. While along tevelopment of
sensing technologies and the abilitisscognizing more complex PA
types suggests promising opportunities. HMM and itmmal random
fields (CRF) [109] and knowledge-driven approacfiet6] could be
useful techniques in addressing such issues.

7.5 High volume of data

The heterogeneous devices connected in 10T envieatsyand life-
logging collection of physical activity data willebdriving major
expansion in big data of PA. These data containigta sheer volume
of long-term PA information, but also complex, diseand rich context
of other health information. The uncertainty ofgbelata will be much
higher than physical activity data training by slasmachine learning
methods of PARM techniques. Effectively and effithgnmproving
validity of these PA data and exploring useful kiedge becomes a
difficult task. Therefore, research work on hoveiplore these big PA
data under loT environments for bringing intelligerfor more solid
clinical decision-making and policy formulation Wile significance.

8. Conclusion

Given the importance of Physical Activity Recogmiti and
Monitoring (PARM) for healthcare support of a véyief chronic
diseases, musculoskeletal rehabilitation, indepsndi®ing of the
elderly, as well as fitness goals for active lifdess, a number of studies
have been devoted to the crucial issues of PARNhduhe last two
decades. The contribution of this work is frompleespective of Internet
of Things (10T) that sequentially covers the seg$ayer, network layer
processing layer and application layer, distindyivand systematically
summarizing existing primary PARM devices, methodsnd
environments. Wearable and portable sensors/devioedial signal
data processing and classification/clustering agugtes are described
and compared in the light of physical activity tgpsubjects, accuracy,
flexibility and energy. Typical research and projepplications
regarding PARM are also introduced. In the end,llehges and
potential future trends have been analysed ane thesociated with 10T
highlighted.



Appendix

Table 7. Studies of activity recognition and moniitg based on Internet of Things (IoT) structure€@accelerometer; gyro-gyroscope; ECG-electrocgrdjghy)

Sensing layer Network layer Processing layer Application layer

Works | Devicels Placed position | Network Segmentation Classifier/ Subjects Detected activities Accuracy

/Features Cluster
[39] 1 ACC Waist Not mention Time-domain SVM, ANN, | 20 young healthy] Postures, transitiong In lab: 82%-| Compared PAR models in and out of tl
and frequency-| DT people walk, run, cycle, football| 99% lab and proposed potential solutions
domain features Out of lab:
249%-83%

[37] ACOR+ day: belt; night:| Bluetooth Not mention DT 15 (9 COPD| Postures, walk, read 77%94% Simple device and real-time PAR
kinematic chest patients, 6 healthy exercises applied on COPD (chronic obstructi
system (1 3D people) pulmonary disease) patients hon
ACC, 1 monitoring.
microcontrol
ler

[36] 13DACC,1| ACC on the| ZigBee, Wi-Fi,| FFT (mean,| SVM Not mention Run, go downstairs, g4 90%99% Apply in the context-aware environme
wearable belly; Bluetooth energy, upstairs, take ar for lifelogging health monitoring.
camera Camera hung correlation) elevator, walk forward,

over neck walk backward, stand
sit, turn

[31] 23D ACC, 1| Accelerometers | Not mention Time-domain SVM 50 healthy pedp Postures, vacuum, cycl§ 89.3% on| Effectively and accurately assess H
ventilation hip, wrist; (mean value, SD play balls, work average energy expenditures using multi-sens
sensor ventilation median, fusion technique.

sensor: abdomen| percentiles);
frequency-
domain (energy,
entropy)

[16] 1 gyro on| Feet, knee Not mention Not mention Knowledge- 10 able Walk on level ground, >96% A system of controlling the gait cycle of
shoe based body people, 6| walk up and down g neuroprosthesis for walking in real time|

algorithm people with | steep cobblestone roa
impaired gait walk on grass, ascen|
and descend, stand (
and down, bend kneeg
rotate




[147] 13D ACC, 1| Upper and lower| Bluetooth Kalman-filtering | Kinematic 8 healthy male| circular, rectangulal 95%98% A low-cost human motion capture syste
3D gyro, 1| limb modelling people (2440 years| motion, used in the domain of home-based strq
3D magnetic old) reach, hand to mouth rehabilitation for measure of differer
sensor. flexion-extension, motion circumstances

elevation

[104] A 3D | Belt on waist Not mention Statistics for each 15 older patients of lying-to-sit-to-standto- 90%100% Detect falls at bedsides for elderly a
seismic axis a geriatric | walk (LSSW) test patients in independent livin
ACC, 3 rehabilitation clinic environment with cost-effective method
gyros (median age 81

years) , 10 young
healthy people|
(median age

37 years)

[148] 1 watch with | Belt on waist,| Not mention self-defined Bayes 49 people Gestures, drinks| 79%95% Detect energy intake for the study
1 ACC, 1| thigh, shank; features basedn swallows, chews, bites obesity by the means of continuously a
gyro, 1 each interpeak automatically detecting the periods
iPhone 4 segmented periog eating throughout the day.

[74] 5 biaxial | right hip, | Not mention Time-domain nearest 20 people (age fron] ambulation, 43%97% First work of wireless acceleromete
ACCs dominant wrist, (sum, energy,| neighbor 17 to 48) posture, stretch, laundry measuring PA in an uncontrolle|

non-dominant mean, ); FFT (DC| algorithms; brush teeth, ride lift eat environment for the purpose of assess
upper arm, component, leave-one- drink, bike, read, PA accuracy.

dominant ankle, entropy) subject-out vacuum

and non- training

dominant thigh

[84] Inertial Arm Not mention SWAB segment;| HMM object interaction 97.4%-98.4% | Facilitate PA recognition and conte
sensors Euclidean gestures, dietary intak applications in real life.

distance gestures

[43] 3D ACC unit | Wrist, arm ZigBee SMA, SVM Calculate 6 people Transitions, fall, walk,| 83.3%-95.6% | Assist remote supervision for healthcg

angle between static postures, circuit monitoring in terms of promoting th
the z-axis longevity of battery life and thu
vector and the| enhancing the system’s usability in real
gravitational life.

vector

[149] 9 ACCs Chest, waist,| Not mention Multiple HMM | Multiple 6 healthy subjecty Stairs down, stand, si 82.3%-98.5% | Automatic recognition of PA withou

right thigh, left regression HMM with  age 2530 | down sit, from sitting to human efforts in a healthcare monitori

ankle

segmentation

sitting on the ground, si

environment.




regression years old, weight| on the ground, lie down
(MHMMR) 55-70kg. lie, from lying to sitting
on the ground, stand uf
walking, stairs up
[45] 1 ECG, Left hip Bluetooth Time domain and| SVM, GMM 5 young healthy| Postures, play gameg 79.3%-97.3% | Healthcare assessment and rehabilitaf
1ACC Cepstral features people (ages 130 | brisk walk, slow walk, intervention
2M,3F) run
[27] 5 ACCs, 1| Chest, ankle,| Wireless network Activity- 15 young healthy| Sedentary, lifestyle| 70%-98% Compared sensor numbers @
ECG thigh, wrist, right specific energy| people (11 M, 5 F) | sports, run positioning to accurately measure H
necklace hip expenditure types and energy expenditures f
methods healthcare and wellbeing purpose
[150] Gyros, Shoulder, elbow | Not mention Not mention Kalman 8 healthy people Elbow and shouldel 95%99% Diagnosis of neurological moveme
ACCs filtering flexion/extension, disorders, rehabilitation from injury, an|
forearm enhancement of athletic performance.
supination/pronation,
shoulder abductior
/adduction
[151] A watch with | Wrist Not mention Not mention HMM 23 subjects Wave arms, watch 97.1% on| Help people to achieve performance go
1ACCand1 check, drink, pick up| average and reduce bad habits through arm mot
gyro phones from a table| recognition
shake hands, natural ar
actions when walking
[46] 1 3D ACC, | Left hip Not mention Time-domain K-means 12 young healthy] Walk, run 90.8%-94.3% | Measure PA intensity with intersubje
metabolic (mean, SD,| cluster, GMM | people variability.
cart variance)
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