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Abstract—Plenoptic cameras are receiving increased5
attention in scientific and commercial applications because6
they capture the entire structure of light in a scene, en-7
abling optical transforms (such as focusing) to be applied8
computationally after the fact, rather than once and for all at9
the time a picture is taken. In many settings, real-time inter-10
active performance is also desired, which in turn requires11
significant computational power due to the large amount12
of data required to represent a plenoptic image. Although13
GPUs have been shown to provide acceptable performance14
for real-time plenoptic rendering, their cost and power15
requirements make them prohibitive for embedded uses16
(such as in-camera). On the other hand, the computation17
to accomplish plenoptic rendering is well structured,18
suggesting the use of specialized hardware. Accordingly,19
this paper presents an array of switch-driven finite impulse20
response filters, implemented with FPGA to accomplish

Q1
21

high-throughput spatial-domain rendering. The proposed22
architecture provides a power-efficient rendering hardware23
design suitable for full-video applications as required in24
broadcasting or cinematography. A benchmark assess-25
ment of the proposed hardware implementation shows that26
real-time performance can readily be achieved, with a one27
order of magnitude performance improvement over a GPU28
implementation and three orders of magnitude performance29
improvement over a general-purpose CPU implementation.

Q2

Q3

30

Index Terms—.31

I. INTRODUCTION32

OVER the last two decades, several studies have reported33

methods to computationally render varyingly focused im-34

ages from a single lightfield photograph [1]–[8]. In addition to35
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spatial information, lightfields contain directional information, 36

acquired by capturing an array of two-dimensional (2-D) spatial 37

images with either multiple conventional cameras [1], [9]–[11] 38

or by attaching a micro lens array (MLA) to a single image 39

recording device [2], [12], [13]. In science, lightfield cameras 40

are also known as plenoptic cameras derived from the Latin 41

and Greek roots meaning “full view” [13], [14]. For industrial 42

applications, MLAs are preferred to simple pinholes or coded- 43

aperture patterns due to improved light-gather capability and 44

to multiaperture systems due to compact form-factor. A study 45

carried out by Ng et al. [15] has found that the maximum direc- 46

tional information is recorded when placing the microlenses one 47

focal length away from the image sensor. However, a follow-up 48

study reinvestigated this and showed that it is possible to flex- 49

ibly tradeoff directional and spatial resolution by shifting the 50

MLA with respect to the sensor [4], [16]. In this paper, we refer 51

to the former design as the standard plenoptic camera (SPC) 52

and the latter as the focused plenoptic camera (FPC). While re- 53

searchers have developed a number of approaches to plenoptic 54

camera design [17], [18], the rendering (or focusing) process 55

remains computationally intensive, posing a core challenge to 56

the computer vision field. 57

One motivating industrial performance-sensitive application 58

for plenoptic cameras is in cinematography, where the use of 59

plenoptic source video can greatly enhance the flexibility and 60

creativity in capture and production. For example, since the opti- 61

cal parameters are not irrevocably set at the time the video is cap- 62

tured, focus or depth of field can easily be adjusted in postpro- 63

duction. Moreover, new creative effects can be applied, includ- 64

ing nonphysical optical effects. Plenoptic video can also be used 65

to create stereo pairs for three-dimensional (3-D) viewing—with 66

the important advantage over stereo capture that different videos 67

can be created for different devices, each having parallax suited 68

for the particular device [19]. Finally, 2-D and 3-D production 69

can use significantly different effects for directing the viewer’s 70

attention (depth of field is not as useful in 3-D as 2-D, for exam- 71

ple). With plenoptic source video, 2-D and 3-D can be rendered 72

from the same source, with different creative effects for each. 73

We note that Lytro, one of the earliest manufacturers of plenop- 74

tic cameras, has recently announced a video lightfield camera to 75

the broadcast and cinematography market [20]. In any of these 76

scenarios, high rendering performance is essential. For preview 77

and for postproduction, rendering of each video frame must be 78

accomplished at the video frame rate, regardless of the effects 79

and adjustments being applied. 80
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An early attempt at high-performance rendering was based81

on the projection slice theorem, which rendered images with82

lower dimensional slices of the lightfield in the Fourier do-83

main [3], [21]. This procedure is also known as Fourier slice84

photography (FSP). Although FSP has the potential to be effi-85

cient when rendering a large number of focused images from86

the same lightfield, there are significant overheads in this ap-87

proach that limit its practical application. Real-time rendering88

in the spatial-domain has been achieved with graphical pro-89

cessing units (GPUs) [22], but the cost and power associated90

with GPUs make their use in embedded settings (for example)91

impractical. Accordingly, it is the goal of this study to devise92

and demonstrate a special-purpose hardware architecture that93

performs real-time rendering in the spatial-domain based on se-94

rially incoming video frames. We propose an array of semisys-95

tolic finite impulse response (FIR) filters designed for high data96

throughput. Moreover, we realize the rendering convolution ker-97

nel in FIR fashion by introducing switches to the filter distribu-98

tion network. For power efficiency and configuration flexibility,99

the proposed design is implemented with a field programmable100

gate array (FPGA). As distinguished from previous studies, our101

hardware design accomplishes a computation time of less than102

100 μs for a single refocused frame with 3201-by-3201 pixel res-103

olution when running at 100-MHz pixel clock frequency. This104

outperforms earlier studies in the field, which we further demon-105

strate with benchmarks against a GPU and a CPU MATLAB106

implementation.107

The organization of this paper is as follows. Section II presents108

recent developments in the field of FSP and SPC lightfield mod-109

eling to serve as a starting point for refocusing in spatial-domain.110

Section III imposes requirements on the filter module architec-111

ture and presents a solution based on switch-driven FIR filters.112

The proposed hardware design is examined in Section IV, us-113

ing a hardware description language (HDL) for FPGAs (see114

supplementary material) and by benchmarks with an alternative115

GPU-based implementation. Conclusions and suggestions for116

further work are presented in Section V.117

II. RELATED WORK118

A. Background119

A lightfield can be retrieved by light rays intersecting two120

consecutively-placed 2-D planes of known relative position [9].121

Intersections of a single ray at two 2-D planes yield four co-122

ordinates in total, thus making up a four-dimensional (4-D)123

light ray parametrization. Because of its simplicity, this concep-124

tual model has gained popularity among scientists in the field of125

computer vision. A related one-plane parameterization based on126

position and angle can also be used [4], [16]. In the celebrated127

work by Ng et al. [3], a raw captured 4-D lightfield is trans-128

formed to the Fourier domain to achieve refocusing using the129

projection-slice theorem. Unfortunately, the process of taking130

Fourier transforms, interpolating for slicing, and then taking in-131

verse transforms introduces significant computational overhead,132

making FSP unsuitable for real-time rendering. This assump-133

tion was confirmed by Mhabary et al. [21], who have worked to134

advance FSP by employing a fractional Fourier transform. How-135

ever, the authors conclude that the integral projection operator 136

in the spatial-domain is faster when computing only a single 137

refocused image from a lightfield. The suitability of refocusing 138

in the spatial-domain was further confirmed by Lumsdaine et al. 139

who demonstrated real-time rendering performance using GPU 140

hardware [22]. For these reasons, our approach in this paper is 141

based on rendering in the spatial-domain. 142

The main concept of computation time improvements using 143

FPGAs builds on the principle of parallelization and pipelin- 144

ing [23]. A pipeline comprises chained processor blocks fed 145

with serialized data that are processed sequentially. Speed up 146

is obtained by processing data chunks in one processor unit 147

while subsequent data chunks are handled in preceding units. 148

Hence, the benefit of pipelining is that serialized data chunks 149

are processed at the same time while processor units perform 150

different tasks. While data serialization limits a specific task 151

to be computed with one single operation at a time, e.g., one 152

pixel after another, parallelized data streams allow a comput- 153

ing system to perform at least two operations of the same type 154

simultaneously. Parallelization can be thought of as duplicat- 155

ing processor pipelines, which requires synchronized parallel 156

data streams as input signals. Letting the degree of paralleliza- 157

tion be ι, the computation time in image processing may be 158

minimized to O (
K2/ι

)
if 2-D image dimensions consist of K 159

samples each and provided that both computation systems run at 160

the same clock frequency. Consequently, the one-dimensional 161

(1-D) parallelization limit is reached where ι = L for image 162

rows and ι = K for image columns, which is the ideal scenario 163

in terms of parallelizing data processes. 164

Early work in the field of embedded plenoptic imaging was 165

reported by Rodrı́guez-Ramos et al. [24], who employed an 166

FPGA to process plenoptic data with the aim of analyzing wave- 167

front measurements. Another interesting approach, reported by 168

Wimalagunarathne et al. [25], proposed a design to render com- 169

putationally focused photographs from a set of multiview im- 170

ages using infinite impulse response filters. Work on real-time 171

rendering from FPC captures was presented in [22]. The first 172

reported hardware design for performing real-time rendering 173

from SPC captures was presented by Hahne et al. [6]. Shortly 174

thereafter, Pérez et al. [7] published an article addressing the 175

same topic. The authors demonstrated significant computation 176

time improvements compared with run times based on a cen- 177

tral processing unit (CPU) system that was programmed using 178

an object-oriented language. A theoretical comparison of our 179

method with that of Pérez et al. [7] is carried out at the end of 180

Section III. 181

B. SPC Ray Model 182

Development of a computationally efficient refocusing algo- 183

rithm requires knowledge about the ray geometrical properties 184

in a plenoptic camera. To conceive a refocusing hardware archi- 185

tecture in spatial-domain, we employ a ray model reported by 186

Hahne et al. [8], which is based on paraxial optics. The model 187

is depicted in Fig. 1 and builds on the assumption that image 188

sensor plane and MLA are separated by one focal length fs such 189

that the MLA is focused to infinity, which is in accordance with 190
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Fig. 1. SPC ray model (borrowed from [8]) with microlens chief rays
traveling through the MLA plane s and main lens plane U , which is
depicted as a thin lens. Lightfield intensities captured at the sensor plane
are denoted as Efs [sj , uc+ i ] for the 1-D case. Chief ray colors in a
microimage indicate angular samples uc+ i .

Ng’s concept of a plenoptic camera [15]. To understand light-191

field imaging in an SPC, as in the Lytro setup [20], one may192

regard a main lens image of an object plane to be focused on193

the MLA plane. In this case, the focused light rays converge to194

the microlens and diverge when leaving it to form a microimage195

(see Fig. 1). A pixelated light-sensitive detector placed behind196

the MLA captures angular portions of the incident-divergent197

beam. Each angular sample in this microimage corresponds to198

the same focused spatial point in space observed from different199

views. This point’s intensity is recovered when integrating all200

microimage samples.201

We denote a lightfield captured by an SPC in the follow-202

ing way. For clarity, only the horizontal cross-section is re-203

garded hereafter. In the angular domain u, we start counting204

samples from microimage centers (MICs), which serve as a ref-205

erence positions c = (M − 1)/2 where M denotes a consistent206

total number of samples for each microimage in one dimen-207

sion. Microimages are seen to be radially symmetric and hor-208

izontally indexed by c + i, with i ∈ [−c .. c]. Horizontal light-209

field positions are then given as [sj , uc+i ] with j as the 1-D210

Fig. 2. Processing requirements for the hardware architecture. The
diagram shows exemplary input illuminance values Efs (see Fig. 1)
subdivided into microimages sj and synthesized output values E ′

a at a
desired refocused image plane a.

index of a respective micro lens sj . All microimages together 211

form a light field image with its cross-sectional representa- 212

tion Efs
[sj , uc+i ] where Efs

denotes a pixel’s illuminance. 213

As demonstrated in [8], a horizontal cross-section of a lightfield 214

image can be refocused by employing 215

E ′
a [sj ] =

c∑
i=−c

1
M

Efs

[
sj+a(c−i) , uc+i

]
, a ∈ Q (1)

where a adjusts the synthetic focus. Equation (1) can also be 216

applied to the vertical dimension. 217

Since images acquired by an SPC do not feature the 218

Efs
[sj , uc+i ] notation, it is convenient to define an index trans- 219

lation formula considering the lightfield photograph to be of two 220

regular sensor dimensions [xk , yl ] as if taken by a conventional 221

sensor. Indices are then converted by 222

k = j × M + c + i (2)

in the horizontal dimension meaning that [xk ] is formed by 223

[xj×M +c+i ] to replace [sj , uc+i ]. This concept of index trans- 224

lation may be similarly extended to the vertical domain. 225

III. FILTER DESIGN 226

An efficient hardware design that enables an FPGA to 227

refocus in real-time may be conceptualized on the basis of the 228

lightfield ray model presented in Section II. The upper data 229

line of Fig. 2 depicts discrete and quantized illuminance values 230

Efs
[xk ] of a single horizontal row that is part of a calibrated 231

lightfield image. Lightfield calibration implies MIC detection 232

and rendering procedures to obtain a consistent microimage 233

size (M ). The computational refocusing synthesis given in 234

Section II reveals that pixels involved in the integration process 235

expose interleaved neighborhood relations, which exclusively 236

depend on a. This phenomenon is illustrated by the data flow 237

diagram in Fig. 2, where respective pixels are highlighted for 238

two exemplary refocusing settings: a = 0/3 and a = 2/3. Here, 239

each color corresponds to a chief ray in the model in Fig. 1, 240

with M = 3 where yellow represents the MIC pixel. In this 241

section, a hardware architecture is devised that accomplishes 242

signal processing according to (1) as depicted in Fig. 2. 243

On the supposition that a horizontal cross-section of a cap- 244

tured lightfield Efs
[xk ] is a linear, time-invariant system, the 245

integral projection in (1) may be represented as a discrete FIR 246
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convolution formula. Following the [sj , uc+i ] to [xk ] translation247

in Section II, 1-D refocusing can be given by248

E ′
a [xk ] =

M −1∑
i=0

1
M

Efs

[
xk ′+i(aM −1)

]
, a ∈ Z (3)

with249

k′ = (k + 1) × M − 1 (4)

taking care of a correct integral projection, which inevitably250

reduces the number of samples in the rendered output image.251

Equation (3) aims at complying with the classical FIR filter no-252

tation, however with indices in subscripts for consistency rea-253

sons and to let x signify the domain and coordinate direction.254

Upon closer examination, one may notice that the impulse re-255

sponse is represented by a constant coefficient 1/M , which is a256

consequence of weighting pixels equally during the integration257

process. Note that i ∈ [0 ..M − 1] in the following.258

In contrast to (3), we seek to reproduce an output image with259

a resolution numerically equal to that of the raw sensor image.260

To compensate for sample reduction in the integral projection261

process, the overall sensor resolution may be retained by up-262

sampling the spatial-domain during image formation. Besides,263

it will be shown hereafter that our proposed upsampling scheme264

enables interpolation of refocused depth planes.265

To break down the complexity, we devise one filtering func-266

tion per refocusing slice a that qualifies for FIR filter implemen-267

tation. Regardless of the microimage resolution M , a filter that268

computes a refocusing slice with a = 0 in horizontal direction269

reads270

E ′
0/M [xk ] =

M −1∑
i=0

1
M

Efs

[
xk−i− mod (k+1, M )

]
(5)

when k ∈ {0, . . . , K − 1}. Term mod(k + 1, M) comprises a271

nearest-neighbor (NN) interpolation ensuring that the numerical272

output image resolution matches that of the input. A syntheti-273

cally focused image where a = 1 is formed by274

E ′
M/M [xk ] =

M −1∑
i=0

1
M

Efs

[
xk+i(m−1)

]
. (6)

Synthesis equations for different a = a′/M are retrieved by275

reverse-engineering. Probably, the most straightforward refo-276

cusing filter kernel function is given by277

E ′
1/M [xk ] =

M −1∑
i=0

1
M

Efs
[xk−i ] (7)

which computes refocusing slice a = 1/M . When implement-278

ing (7) as an FIR filter, it becomes obvious that the number of279

filter taps amounts to M . A VHDL implementation using this280

filter type with M = 5 is provided in supplementary material. In281

the following, we demonstrate a refocusing hardware architec-282

ture that is adapted to an SPC with M = 3. Then, a photograph283

refocused with a = 2/3 is computed by284

E ′
2/3 [xk ] =

3−1∑
i=0

1
3

Efs

[
xk−i+ |� mod (k+1, 3)/3�−1|×(i−1)

]
(8)

Fig. 3. 1-D semisystolic FIR filter for sub-pixel shift a = 0/3.

where �·� is the ceiling and | · | the absolute value operator. An 285

exemplary step in the computation of E ′
2/3 [xk ] would be 286

E ′
2/3 [x3 ] =

1
3
Efs

[x3 ] +
1
3
Efs

[x2 ] +
1
3
Efs

[x1 ]. (9)

Here, fractions 1/3 can be regarded as multipliers, denoted as h0 , 287

which are identical for each pixel such that h0 = 1/M . On the 288

condition that incoming images are underexposed and clipping 289

is prevented, it is noteworthy that multipliers are redundant and 290

thus can be left out. 291

A. Semisystolic Modules 292

Equations (5)–(8) are implemented with a systolic filter de- 293

sign. Systolic arrays broadcast input data to many processing 294

elements (PEs). As shown, all wired connections in a systolic 295

filter contain at least one latch driven by the same clock signal. 296

semisystolic designs omit these latches. All of the remaining 297

designs that we consider are semisystolic, but latches can be 298

added for systolic FPGA implementation purposes. Descriptive 299

information about systolic arrangements can be found in [26]. 300

A positive side effect of the systolic filter is that it can be 301

exploited for an NN-interpolation in microimages. By letting 302

the upsampling factor be the number of microimage samples 303

M , the resolution loss in integral projection is compensated, 304

since incoming and outgoing resolution are the same. Naturally, 305

the interpolation method can be more sophisticated, which in 306

turn requires intermediate calculations, causing delays and an 307

increasing number of occupied logic gates. Closer inspection of 308

(6) reveals that pixels that need to be integrated are interlaced. 309

Thereby, gaps between merged pixels grow with ascending a 310

and extend the filter length. The omission of pixels within gaps 311

is realized with switches. A switch-controlled semisystolic FIR 312

filter design of (5) with multiplier h0 is depicted in Fig. 3. In 313

this design, switch states are controlled by bits in a 2-D vector 314

field denoted as s(a, w , p) that is given by 315

s(0/3, w , p) =

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ (10)

if a = 0/3. Depending on refocusing parameter a, switch state 316

matrices s(a, w , p) contain binary numbers with columns indexed 317

by w for the state of each switch in the FIR filter and with rows 318

indexed by p, which loads a new row of switch states when 319
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Fig. 4. Timing diagram of FIR filter module with a = 0/3.

Fig. 5. 1-D semisystolic FIR filter for sub-pixel shift a = 1/3.

incremented. In addition, a write enable switch helps to prevent320

intermediate falsified values from being streamed out.321

For better comprehension, a timing diagram in Fig. 4 visual-322

izes the computational concept of the FIR design from Fig. 3.323

Here, the pixel clock signal is given as PCLK. Furthermore, the324

proposed architecture employs the doubled pixel clock PCLKx2325

with a time period TPCLKx2 = TPCLK/2 to shift and add pixel val-326

ues in a single pixel clock cycle TPCLK. It is also seen that a new327

row of switch states is called by incrementing p every pixel328

clock cycle. Numbers in the data streams represent unsigned329

decimal 8-bit gray-scale values, which are multiplied with h0 =330

1/3. Pixel colors match those of the SPC ray model in Fig. 1331

representing chief ray positions in microimages with M = 3.332

Orange color highlights interim results and red signifies 1-D re-333

focused output data. Oval circles indicate that the sum of divided334

microimage pixels is reflected in the output pixel E′
0/3 [xk ]. The335

filter includes an NN-interpolation upsampling the micro image336

resolution by factor 3. To refocus with a = 1/3, another FIR337

filter module is conceived based on (7) and depicted in Fig. 5. In338

reference to the previous FIR filter where a = 0/3, it becomes339

obvious that the arrangements are identical except for different340

switch states. The switch state matrix s(1/3, w , p) is given by341

s(1/3, w , p) =

⎡
⎣

1 1 1
1 1 1
1 1 1

⎤
⎦ (11)

which means that switches remain closed at all times. A cor-342

responding timing diagram is shown in Fig. 6. Fig. 7 depicts343

Fig. 6. Timing diagram of FIR filter module with a = 1/3.

Fig. 7. 1-D semisystolic FIR filter for sub-pixel shift a = 2/3.

Fig. 8. Timing diagram of FIR filter module with a = 2/3.

an FIR filter according to (8), which occupies more PEs due 344

to the fact that the distance between added pixels grows. The 345

corresponding switch state matrix s(2/3, w , p) is as follows: 346

s(2/3, w , p) =

⎡
⎣

0 0 1 1 1
0 1 1 1 0
1 1 1 0 0

⎤
⎦ (12)
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Fig. 9. Parallelized 2-D processing module array with ι = 3.

producing a filter behavior shown in Fig. 8. As Fig. 7 demon-347

strates, a large 1-D semisystolic filter module may imply long348

wires when broadcasting multiplier outputs. Long wires would349

cause a low-pass filter behavior in the signal transmission, which350

affects the readability of falling and rising edges and therefore351

has to be avoided. To keep wires short in the broadcast net,352

incoming bit words can be distributed to several synchronized353

latches (buffers) before being merged in adders.354

B. 2-D Module Array355

The proposed FIR filter modules process data in 1-D and thus356

in horizontal or vertical directions only. Fig. 9 shows a 2-D357

construct of 1-D semisystolic processor modules to accomplish358

refocusing by processing data in both dimensions. In this exam-359

ple, the degree of parallelization amounts to ι = 3, but could be360

scaled as desired until limits are reached (ι = L for image rows,361

ι = K for image columns).362

The data flow in Fig. 9 is described in the following. First,363

pixels coming from the sensor are fed into horizontal processor364

blocks representing semisystolic FIR filter modules as proposed365

in the previous section. All semisystolic processor modules are366

identical whereas the type relies on the refocusing parameter a.367

In the second stage, horizontally processed data rows E ′
a [xk , yl ]368

are delayed using skewed registers and assigned to another ar-369

rangement of semisystolic modules making it possible to form370

an incoming image column (e.g., E′
a [x0 , yl ]). Here, demulti-371

plexers are driven by a pixel counter to assist in the correct372

assignment of pixels values. This assures that pixels from dif-373

ferent rows sharing index k are sent to the same vertical pro-374

cessing unit that produces an image column (e.g., E′′
a [x0 , yl ])375

of the final refocused image. For synchronization purposes, an376

additional array of skewed registers can be optionally placed377

behind column processor blocks.378

In order to estimate the computation time, it is assumed here-379

after that the hardware system refers to the ideal case of maxi-380

mum parallelization where ι = L or ι = K for each dimension,381

respectively. Besides, it is supposed that color channels are also382

parallelized causing no extra time delay. The shift and integra-383

tion for a single output pixel refocused with a = 1/M takes M384

pixel clock cycles in 1-D when using twice the pixel clock to385

process them. Taking this as an example, the overall number of386

steps η to compute a single image E ′′
1/3 with K-by-L resolution387

TABLE I
BENCHMARK OF PROPOSED ARCHITECTURE

is given by 388

η = 2(Λ + M) + 2(K − 1) + L − 1 (13)

where Λ represents a single clock cycle step to compute the 389

mathematical product of an incoming pixel value. The total 390

computation time O for a single image can be obtained by 391

O(η) = η × TPCLK . (14)

This duration reflects the theoretical time that elapsed from the 392

moment the first pixel Efs
[xk , yl ] entered the logic gate until 393

the final output pixel E ′′
a [xk , yl ] is available. When pipelining 394

the data stream, output pixels of a subsequent image arrive di- 395

rectly after that letting the overall computation time for a single 396

frame be represented by the delay time of the computational fo- 397

cusing system. Once the first refocused photograph is received, 398

the number of remaining computational steps ηsub for every 399

following image amounts to: 400

ηsub = L − 1 + K − 1 . (15)

To assess performance limits of the presented architecture, we 401

performed a benchmark comparison between this approach, 402

the FPGA-based implementation of Pérez et al. [7], and a 403

GPU-based approach [22]. In this comparison, a 3201-by-3201 404

pixel image (K = L = 3201) with 291-by-291 microlenses was 405

computationally refocused in 105.9 ms at 100-MHz clock fre- 406

quency. Thereby, the microimage resolution is M = 11 and 407

the output image resolution amounts to 589-by-589, which 408

is less than 1/6 of the incoming image. Conversely, the 409

proposed semisystolic method numerically preserves the in- 410

coming spatial resolution by employing an NN-interpolation 411

in η = 1 + 11 + 3200 + 1 + 11 + 3200 + 3200 steps yielding 412

O(η) = 96.2μs computation time for a single frame when run- 413

ning at 100 MHz pixel clock. Each subsequent frame, how- 414

ever, can be processed in ηsub = 3200 + 3200 steps, which is 415

available at every O(ηsub) = 64μs. In comparison, an iden- 416

tical implementation based on the GPU implementation by 417

Lumsdaine et al. [22] takes approximately 1.38 ms on aver- 418

age, whereas a MATLAB implementation takes approximately 419

12.1 s per image on average as seen in the overview in Table I. 420

In this comparison, we employed the Spartan-6 XC6SLX45 421

chip using the ISE WebPACK design software from Xilinx. 422

The refocusing shader were executed on a Fermi architecture 423

GeForce 480M GTX with 2 GB of GDDR5 RAM running at 424

1200 MHz, connected to a 256 bit bus [22]. For the CPU en- 425

vironment, we used MATLAB 7.11.0.584 (R2010b) on an Intel 426

Core i7-3770 CPU @ 3.40 GHz without multithreading. 427

IV. VALIDATION 428

In this section, we evaluate the functionality of the proposed 429

FPGA-based refocusing hardware design. For that purpose, the 430
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Fig. 10. Block diagram (borrowed from [6]) for experimental validation.
Single arrows denote serialized whereas three arrows indicate paral-
lelized data streams. Row buffers are employed to simulate data paral-
lelization in the experiment.

TABLE II
UTILIZATION SUMMARY FOR XC6SLX45–CSG324

VHSIC HDL (VHDL) is used to configure the FPGA where VH-431

SIC stands for very high speed integrated circuit. A schematic432

file, generated from a VHDL compiler, is then flashed onto433

the FPGA chip model XC6SLX45. Fig. 10 contains a block434

diagram illustrating the implemented processing architecture435

used to validate the design proposed in the previous section.436

The FPGA board features high-definition multimedia interface437

(HDMI) connectors such that video frame transmission is ac-438

complished using the transition minimized differential signaling439

(TMDS) protocol. TMDS receiver and transmitter designs have440

been integrated on the FPGA to fulfill deserialization, serial-441

ization just as decoding and encoding tasks. Off-chip memory442

is used for buffering decoded and serialized video frames out-443

side the FPGA since the amount of image data exceeds internal444

memory storage.445

In our implementation, a row of switch settings is loaded446

from a look-up table (LUT) every clock cycle starting from447

the first row again after the last one is reached. The switch-448

state LUTs can be stored in block random-access memorys449

(BRAMs), which are part of the FPGA. The integration of mul-450

tiplier h0 is also achieved using on-chip memory, making it451

called stored product. In accordance with the TMDS protocol452

specification, a decoded pixel value is of 8-bit depth per color453

channel, which yields a manageable number of 256 possible454

results when dividing by M . Thus, quotients can be precalcu-455

lated for a specific divisor M and stored in one BRAM per456

color channel for each image row. Note that these BRAMs are457

read-only memories.458

Fig. 11. Timing diagram example from ISE simulator.

Fig. 12. Refocused photographs using the proposed architecture. (a)
E ′

0/3 . (b) E ′
5/3 . (c) E ′′

0/3 . (d) E ′′
5/3 . (e) E ′′

0/5 . (f) E ′′
8/5 . Input and output

spatial image resolutions amount to 843-by-561 pixels with M = 3 in
(a)–(d). Intermediate horizontally processed images are shown in (a)
and (b) whereas (c) and (d) depict fully refocused images after horizontal
and vertical processing with varying a. In comparison, output images in
(e) and (f) with 1405-by-935 pixel resolution expose improved synthetic
blur by using a linear interpolation of whole microimages with M = 5.
Reducing a lightfield’s angular sampling rate M extends the depth of
field [8] and leads to blur aliasing in case of angular undersampling [15].

A screenshot from an exemplary timing diagram simula- 459

tion where a = 1/3 and TPCLK = 60 ns is provided in Fig. 11 460

with the code attached to this article. This VHDL-implemented 461

hardware simulation shows that the filter behaves as expected, 462

justifying the conceived architecture. PCLKx2 can be obtained 463

with a phase-locked loop (PLL). An overview of the imple- 464

mented design comprising a single FIR filter with a = 1/5 is 465

presented in Table II where it can be seen that inputs/outputs 466

(IOs) and PLLs make up by far most of the power consump- 467

tion. This is due to the included HDMI transceiver, memory 468

controller block (MCB) and color conversion modules. Parts 469
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Fig. 13. (a) NN interp. E ′′
5/5 (while refocusing). (b) NN interp. E ′′

4/5
(while refocusing). (c) Lin. interp. E ′′

5/5 (while refocusing). (d) NN interp.

E ′′
5/5 (after refocusing). (e) NN interp. E ′′

6/5 (while refocusing). (f) Lin.

interp. E ′′
5/5 (after refocusing). Resolution comparison where (a), (c),

(d) and (f) show the same region refocused with a = 5/5 using different
interpolation techniques during and after shift and integration. Images
in (b) and (e) are NN-interpolated versions with varying a indicating
significant variation of the spatial resolution when compared with (a) and
(d). Effective resolution is more consistent when using linear interpolation
[e.g., compare (d), (e), and (f)].

of these modules may be omitted or replaced by on-board470

integrated circuits (ICs) in a prototyping stage. Furthermore,471

Table II gives indication that adding more FIR filters for full472

parallalization (maximum L and K) is noncritical to power, but473

may be limited to the number of logic slices in a Spartan-6474

device.475

Presented refocusing synthesis formulas require all microim-476

ages to be of a consistent size. This is not the case, however,477

in raw lightfield photographs. As indicated with the experimen-478

tal architecture in Fig. 10, microimage cropping remains an479

external process performed prior to streaming the data to the480

FPGA. Embedding this process on an FPGA is essential for481

prototyping, but left for future work. To comply with FIR filter482

designs in Section III, the microimage size is reduced to M = 3483

and M = 5 for comparison. Lightfield images have been ac-484

quired by our custom-built plenoptic camera with an MLA of485

281 microlenses per row and 188 per column. Insightful details486

on the camera calibration can be found in [27].487

Fig. 12 depicts refocused photographs computed by the pro-488

posed 2-D module array to accomplish real-time refocusing.489

Intermediate results after processing images in a horizontal di-490

rection are seen in Fig. 12(a) and (b). Their fully refocused491

counterparts are found in Fig. 12(c) and (d). Closer inspection492

of Fig. 12(d) indicates aliasing in blurred regions. This is due493

to an undersampled directional domain as there are only 3-by-494

3 samples per microimage (M = 3) in the incoming lightfield495

capture. Aliasing in synthetic image blur is an observation Ng496

already pointed out in his thesis [15]. To combat the aliasing 497

problem, the author suggests to sufficiently increase the mi- 498

croimage sampling rate M . Fig. 12(e) and (f) shows refocused 499

images obtained from a raw capture with a native microimage 500

resolution of 5-by-5 pixels (M = 5) using a linear interpola- 501

tion instead of NN. There, it can be seen that aliasing artifacts 502

are satisfyingly suppressed. A comparison of output image res- Q4503

olutions using the inherent NN-interpolation of proposed FIR 504

filters is provided in Fig. 13. Results in Fig. 13(a)–(f) suggest 505

that interpolating microimages while refocusing with a ∈ Z 506

using (6) corresponds to a conventional 2-D image interpola- 507

tion. On the contrary, an effective resolution enhancement can 508

be observed when comparing Fig. 13(a) where a = 5/5 with 509

Fig. 13(b) where a = 4/5, which are both computed from the 510

same raw image using NN-interpolation. Given that respective 511

objects are acceptably well covered by their depth of field and 512

exhibit best focus, it is possible to state that improved resolu- 513

tion is obtained by refocusing with noninteger numbers (a �∈ Z). 514

This effective resolution variation is a consequence of the mi- 515

croimage repetition and the interleaving filter kernel for the 516

refocusing synthesis yielding identical values for adjacent out- 517

put pixels when a ∈ Z, but varying intensities for contiguous 518

pixels if a ∈ R. This can be seen by inspecting output data 519

streams E ′
a [xk ] of the timing diagrams in Figs. 4 and 6. To work 520

toward consistency in spatial resolutions for varying a, it is thus 521

essential to employ linear interpolation prior to distributing mi- 522

croimage pixels through the FIR broadcast net. A positive side 523

effect in upsampling microimages is that refocused image slices 524

E ′′
a [xk , yl ] are not only interpolated in spatial-domain, but also 525

subsampled along depth as demonstrated in [8]. 526

V. CONCLUSION 527

This paper demonstrated methods to derive optimized FIR 528

refocusing filter kernels for a time- and cost-efficient hardware 529

implementation. Simulating the conceived architecture proved 530

that real-time refocusing can be accomplished with a compu- 531

tation time of 96.24μs per frame reducing the delay time by 532

99.91 % in comparison with a previous state-of-the-art attempt. 533

By interpolating microimages, it was shown how to retain the 534

numerical sensor resolution in refocused photographs. The pro- 535

posed architecture can serve as a groundwork for application- 536

specific integrated circuit chips. 537

A limitation of the results is that timing delays have been sim- 538

ulated and need to be verified using chip analyzing tools. As the 539

number of required PEs grows with higher image resolutions, it 540

may exceed the gate count capacity of the FPGA in full paral- 541

lelization. Besides this, care needs to be taken to prevent long 542

wires in the broadcast net. For the hardware system’s reliabil- 543

ity, it is also recommended to convert semisystolic arrays into a 544

full-systolic architecture. To achieve consistency in microimage 545

size (M ), cropping of the same has to be integrated as a preced- 546

ing processing stage on the FPGA chip. Furthermore, a bilinear 547

interpolation ought to be implemented to replace microimage 548

repetition (NN-interpolation) and work toward consistent effec- 549

tive resolutions in refocused images, although this will cause 550

additional delays. 551



IEE
E P

ro
of

HAHNE et al.: REAL-TIME REFOCUSING USING AN FPGA-BASED STANDARD PLENOPTIC CAMERA 9

A competitive design approach may conceive a refocusing552

architecture based on the FSP theorem. It is, however, expected553

that the Fourier transform produces larger time delays. A con-554

siderable alternative to an FPGA-based implementation is the555

employment of a GPU as this takes less design effort, however,556

by inducing larger delays and more power consumption.557

Deployment of proposed design to an FPC is thought to be558

impractical, since there is a fundamental difference between559

SPC and FPC with regards to the optical design (number of560

microlenses and focus position of MLA). On the algorithmic561

level, SPC refocusing is a pixel-based integration whereas an562

FPC requires the integration of overlapping areas of shifted563

microimage patches such that a refocusing algorithm has to be564

designed specific to the type of plenoptic camera.565

REFERENCES566

[1] A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameterized567
light fields,” in Proc. 27th Ann. Conf. Comput. Graph. Interactive Tech.,568
ser. SIGGRAPH ’00. New York, NY, USA, 2000, pp. 297–306. [Online].569
Available: http://dx.doi.org/10.1145/344779.344929570
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