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Abstract: This paper presents a design of a nonlinear Photonic Crystal Fiber (PCF) based sensor exhibiting 

simultaneously high sensitivity, high birefringence and low confinement losses for liquid analyte sensing 

applications. We investigate the PCF sensor performance for the following analytes; Water, Ethanol and 

Benzyne. The impact of various design parameters of the highly nonlinear PCF on the relative sensitivity, 

the confinement losses and the birefringence features of the proposed PCF structure is numerically 

investigated by employing the full vectorial Finite Element Method (FEM). According to our FEM 

numerical results, a three ring nonlinear PCF based sensor is designed that simultaneously offers high 

birefringence of order 10-3 and high relative sensitivity at wide wavelength range. 
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I. INTRODUCTION 

 

In recent years, Photonic Crystal Fibers (PCFs) are particularly used for sensing applications due 

to their unique abilities that cannot be obtainable by conventional optical fibers. The advancement 

of PCF design technology as well as their far-reaching abilities renders them a potentially excellent 

solution for nanotechnology mechanisms for use in many optical applications [1-8].  

 

The elements of light propagation and inherent geometric flexibility of PCFs enable researchers to 

realize non-traditional propagation features. This is achieved by generating and adapting the size, 

architecture and positioning of the core and cladding holes. A wealth of research has been 

dedicated to such microstructured fibres and has concluded that atypical dispersion behavior [1], 

endlessly single-mode guidance [7], light guidance in low-index components [9, 10], high levels 

of birefringence [11], and modified non-linear  properties can all be attained across broad portions 

of the wavelength spectrum. Such individualistic features within PCFs have facilitated subsequent 

enhancements in the domain of optical communications [1], non-linear optics [12], high power 

technologies [4], as well as sensing [2, 3, 13]. 

 

Sensors based on optical fibres act as inexpensive and efficacious resolution as they are 

exceptionally sensitive, small, robust, and bestow the ability to monitor remotely [14]. In PCFs, 

hollow-core Photonic Band Gap (PBG) structures may be ideal for a selection of sensing-

application solutions [13]. But the complicated production procedure for PBG PCFs has resulted 

in a downfall in the importance of sensing devices. On the other hand, PCFs featuring index 

guidance operations are optimal for applications on sensing [2]. 
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Sensing utilization in index-guided PCF sensors are based on evanescent interaction occurring 

between guided electromagnetic light mode and a sample (Liquid / Gas), resembling that of 

traditional optical fibre sensors [2, 14]. This evanescence in domains where light propagates in 

small spaces emanates to portions in which the sensing analyte under observation is located. The 

existence of air holes within the cladding allows for biological/chemical samples to be in the 

immediate vicinity of the PCF core, either in a liquid or gaseous state [2, 9, 13]. In recent years, 

the concept of confined light guidance through analyte (gas and/or liquid) would provide a key 

step forward to explore the essential nature of interactions between the analyte and the light 

propagation. Given that PCF sensors allow for much interaction throughout the fibre and a given 

chemical sample located in the air holes, they are highly useful in identifying bacteria and remote 

sensing [6, 10, 15, 16]. Generally, alcohol or water are the primary liquids utilized in these 

processes given that they provide large volumes of bio/chemical solutions. 

 

In PCFs, as discussed prior, the typical process for identifying the low index material is depends 

on the interaction  of the evanescent field of the guidance conditions with the relevant gas or liquid 

being analysed/detected [2, 9, 16]. Electromagnetic forces acting upon this analyte under scrutiny 

can be strengthened as necessary. To date, many research papers have aimed to provide a lucid 

understanding of the sensitivity aspects in applying PCFs in a multitude of liquid or gas analytes 

[2, 9]. Evanescent field sensing whereby both the core and cladding are microstructured was first 

introduced by Ref.[13] and analysed in detail by Cordeiro and colleagues [2]. Authors [2] studied 

a range of low index analytes for PCF sensitivities. Recently, enhancements of relative sensitivities 

resulting in minimised loss have been made through use of an octagonal PCF structure [16]. Also, 

Yu et. al. [17] constructed a hyper-sensitive PCF temperature sensor in which the holes of the core 

contain ethanol. Researchers in [17] showed their sensor to be easy in application and readily 

capable, in addition to being inexpensive to synthesise. Liu and colleagues [10] suggested PCF 

structures for use in sensing water-levels whereby the PCF is constructed to be highly perceptive 

to temperatures of the surrounding environment. 

 

In some particular fiber optic sensors, maintaining polarisation states can be crucial. Traditional 

Single Mode Fibres (SMFs) that feature circularly-symmetric cores are unable to sustain 

electromagnetic polarisation configurations for many reasons, as delineated by [18]. The 

polarisation conditions may be sustained through application of modal birefringence. A widely 

used approach for this method in PCFs is adjusting the air hole diameter or through contorting the 

shape of the air holes (elliptical air holes) which surrounds the core [11]. Some of the most 

contemporary research [11, 19] has allowed us to understand and execute PCF designs inclusive 

of large birefringence to the order of 10-3-10-2. 

 

 It is imperative to make the distinction that, different to typical approaches to maintaining 

polarisation fibres, namely bow-tie, elliptical core or Panda which comprise of at least two glasses 

with individualized thermal expansion coefficients, birefringence is attainable in PCFs that are 

largely insensitive to temperatures. This is a fundamental feature of many processes. Adjustable 

and refined high birefringence PCFs may be garnered through symmetrical distributions of the 

relevant sensory material (Liquid/Gas) into the holes. Given the introduction of a new functional 

element, magnetic substances have been noteworthy in their infiltration of PCF as the refractive 

index is highly perceptive to the external magnetic field [20]. 

 



3 

 

In addition, PCFs that bestow exceptional levels of sensitivity and birefringence have been 

analysed for various sensing uses [21, 22]. Strain and temperature sensitive PCFs were investigated 

in [21], and constructed via Ge-doped silica rods placed on the PCF's x-axis. Conversely, 

birefringence as applied in PCFs to sustain polarisation parameters as a function of temperature 

have been analysed in practice in Ref. [22]. 

 

Observation of structures by Yang et. al. [5] have revealed a nonlinear PCF structure with high 

birefringence and low confinement. In this paper [5], simulations revealed high birefringence of 

around 10-2, high non-linearity and minimal confinement losses can all be achieved in the 

demonstrative structure. Authors in Ref. [5] have suggested that such proposed PCF structure can 

be useful for sensing applications. 

 

In this paper, evanescent, hexagonal PCF structures featuring additional air holes about the PCF 

core are put forward and analysed for their sensing abilities. To attain the appropriate levels of 

birefringence, sensitivity (maximal) and confinement losses (minimal) concurrently, the design 

used in this study features circular air holes both in the cladding and core domains. Again, as 

delineated by Ref. [5], a proposal for PCF constructions that feature additional air holes in the 

aforementioned areas enhances birefringence and non- linearity. The sensitivity of the current 

model requires further investigation and improvement in order to purport it as a viable model. 

Therefore, in this study, we draw on foundations provided by Cordeiro et. al. [2] have been utilised 

in expressing a model and Yang et. al. [5] to implement it. To better understand the implications 

of air holes, a detailed study has been conducted. Sensitivity, birefringence and the confinement 

losses of the proposed non-linear PCF structure are studied in detail through application of 

differing liquid analytes.  

 

 
 

Fig. 1 Schematic diagram of the proposed PCF with supplementary liquid filled air holes in the 

core region. 
 

 Fig.1 demonstrates a representation of the preliminary model, in which three additional air holes 

in the core domain and 36 of larger size in the cladding domain are organised in triangular 

formation across the silica backdrop. It is evident that the three variables of non-linearity, 
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birefringence and confinement loss in a PCF is proportional to the foci and asymmetries of the 

fibre configurations, which are dependent on the size and location of holes in the cladding domain 

[5]. Additionally birefringence can be manipulated via holes located in the initial ring. Conversely, 

PCF perceptiveness is relative to confinement losses and direct interactions of light, as well as the 

sample within the core domain [2].  

 

In this study, the numerical analysis of the proposed PCF structure has been carried out using a 

commercial Full Vectorial Finite Element Method (FVFEM). The FVFEM is an all-purpose, 

efficient numerical technique to obtain approximate solutions to boundary value problems [1-2, 7, 

16]. Moreover, FVFEM is an accurate, reliable and well tested method for modal analysis. This 

numerical method is highly accurate and efficient to design PCFs where by defining the sub-

domains and boundary conditions with correct parameters and we can solve complex design 

problems for both Electric field and Magnetic field [23]. The accuracy of the FVFEM method can 

be improved by increasing the mesh density [23]. In the following section, a thorough design 

process and modelling analyses of PCFs is undertaken using the stated FVFEM. 

 

II. DESIGN AND MODELLING OF THE PCF STRUCTURE 

Several problems are faced in designing, optimizing and generating photonic waveguides, the 

central regions of which are made of liquids/gases. These issues essentially pertain to discovering 

appropriate cladding materials which have a very small refractive index so as to support the wave-

guiding. In practical scenarios, negative dispersion may be exhibited by optical nonlinearity. In 

addition, there is a critical discrepancy between optical waveguides and traditional silica optical 

fibres and this leads to considerable limitations in practical uses. Hence, when liquid insertion at 

central hole is permitted, it is possible that defect-less silica PCFs may offer a practical alternative 

solution for low-refractive-index liquid cores [24]. There can be comprehensive regulation of the 

PCFs effective cladding index when fine-tuning of the hole diameter (d) and hole to hole spacing 

(Λ) of the hole arrays in the cladding [6, 25]. Furthermore, different techniques for selectively 

filling the air gaps in hexagonal PCFs with liquids have been developed recently and are now being 

used commonly in laboratory tests [6, 26]. Filling the central hole of a PCF structure with analyte 

like liquid allows the incident light to pass directly though the liquid due to the effective index 

guidance [6].  

 

This study takes into account the conveniences of index-guiding mechanism and the selective 

filling method to find out the design factors of the suggested PCF. The authors have suggested a 

structure in which the hole to hole space is kept at Λ=2 µm and the supplementary air holes are 

sized at 0.36 Λ and 0.465 Λ [5]. The experimental perspective suggests that the risk of collapse 

between air holes while carrying out the fabrication process, along with the single mode operation, 

can be reduced by using larger hole to hole spacing. Hence, we suggest that the hole to hole spacing 

should be kept at Λ = 2.4 µm in the suggested model, and the supplementary air hole diameters 

filled with analytes should be somewhat larger than the PCF structure given in [5]. According to 

our research, these parameters will greatly reduce the complexity of the probable fabrication 

procedure.  

 

The suggested PCF structure along with the supplementary air holes in the central region can be 

seen in Figure 1. Within the cladding, the air holes have a diameter of d = 1.5 µm. In the core 

region, the three air holes that have been filled with analyte are represented by d1 and d3. Higher 
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birefringence levels can be attained and light analyte interaction improves when the air hole in the 

foremost ring of the cladding is used. Here, the diameter is represented by d2. The sizes of the upper 

and lower supplementary air holes d3 are similar and are situated on the y-axis and have a fixed 

distance of d3 1.2 µm. In contrast, the bigger supplementary core air hole (d1) is moved horizontally 

over the x-axis by a fixed distance 0.6 µm away from the centre of the PCF. 36 air holes are present 

in the suggested PCF structures’ cladding region and the refraction index of the cladding holes is 

fixed at 1. Silica is utilized as the background material and has a refraction index of 1.45. There 

will be powerful light confinement when there is variation in refractive index of the core and the 

cladding.  

 

This study utilizes the FV-FEM to examine the suggested PCF structures. The basis of the FVFEM 

development for the modal assessment is the inclusion of the anisotropic Perfectly Matched Layers 

(PMLs) which has the ability to manage several modes as needed and evaluate the leaky modes 

[1, 7, 16]. The PML is strictly speaking not a boundary condition but an additional domain that 

absorbs the incident radiation without producing reflections. The modal assessments are carried 

out on the cross-section in the x-y plane of the PCF as the wave moves along in the z-direction.  

         

The confinement loss Lc, in decibels per meter is given by; 

 

𝐿𝑐 =
40 𝜋

ln(10)𝜆
 𝐼𝑚{𝑛𝑒𝑓𝑓}                  (1) 

 

where, Im{neff} is the imaginary part of the effective refractive index of the mode [1]. 

 

The birefringence is determined by taking the real part of the effective index difference of the two 

fundamental polarisation modes 𝐻𝐸11
𝑥  and 𝐻𝐸11

𝑦
 and can be written as [11]; 

 

𝐵 = |𝑛𝑒𝑓𝑓
𝑥 − 𝑛𝑒𝑓𝑓

𝑦
|               (2) 

 

In PCF structures, the relative sensitivity coefficient r can be calculated by [2]: 

 

𝑟 =
𝑛𝑟

𝑛𝑒
 × 𝑓                            (3) 

 

where, nr is the refractive index of the absorbing material and ne is the real part of effective 

refractive index, f is the percentage of energy presents in the holes. According to the Poynting’s 

theorem f can be expressed as [2]:  

 

𝑓 =
(𝑠𝑎𝑚𝑝𝑙𝑒) ∫ 𝑅𝑒(𝐸𝑥𝐻𝑦

∗ − 𝐸𝑦𝐻𝑥
∗) 𝑑𝑥 𝑑𝑦

(𝑡𝑜𝑡𝑎𝑙) ∫ 𝑅𝑒(𝐸𝑥𝐻𝑦
∗ − 𝐸𝑦𝐻𝑥

∗) 𝑑𝑥 𝑑𝑦
× 100      (4) 

 

III. SIMULATION, RESULTS AND DISCUSSIONS 

       In this study we have investigated the PCF structure in terms of sensitivity where 

supplementary core holes are filled with various analytes. Three different analytes are investigated 

whose refractive index values are obtained as Water (n = 1.33), Ethanol (n = 1.354) and Benzyne 

(n = 1.366) [27]. It is essential to state that the proposed PCF structure supports only four non-
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degenerate eigenmodes (𝐻𝐸11
𝑥 , 𝐻𝐸11

𝑦
, 𝐻𝐸21

𝑥  and𝐻𝐸21
𝑦

) over a very wide wavelength range. In PCFs, 

due to non-circular core structure these modes are linearly polarized and categorized as LP modes.  

In this respect the fundamental LP01 mode corresponds to HE11. It is worth to note that only the 

fundamental LP01 modes are considered.  

 

  
(a)        (b) 

   
 

(c)      (d) 
 

Fig. 2 Variation of  the Effective refractive index (a), the modal birefringence (b), confinement 

loss (c) and the sensitivity coefficient (d)  as a function of the operating wavelength, where  d= 

d1= d2 = 1.5 µm and d3=0.5d. 

 

     Initially, the impact of the operating wavelength on the effective refractive index, birefringence, 

and confinement loss and sensitivity coefficient of the proposed PCF structure is illustrated in Fig. 

2 (a)-(d). The PCF design parameters are set as follows; Λ = 2.4 µm, d = d1 = d2 = 1.5 µm and d3 = 

0.5d. It can be seen from Fig. 2 (a) that the effective refractive index of the fundamental LP01 

(𝐻𝐸11
𝑥 ) mode is decreasing with increasing the wavelength for all types of analytes used in this 

study. On the other hand, in Fig. 2 (b), it can be seen that the lower index analyte (water) is reaching 

much higher birefringence when compared to ethanol and benzyne. A similar trend behavior of 

the analytes under this study can be realised when the confinement losses are examined as a 

function of the wavelength. In other words, our simulations show that higher index analyte, in the 
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core region, reduces the confinement losses in wide wavelength range. The above findings were 

investigated by Ref [5]. However, the sensitivity of the proposed PCF structure for various liquid 

analytes still needs to be computed and optimized before one can conclude that it can be deployed 

in practical applications.  

 

Our simulation results show that proposed PCF exhibits greater sensitivity to the higher index 

analytes. This can be related to the fact that the fundamental mode is more confined in the core 

area for the higher index analytes. As fundamental mode is more confined in the core region, the 

electromagnetic power interaction between the light and the analyte increases, as a result of this, 

we obtain a higher sensitivity coefficient. As can be seen from Fig. 2(c) and (d), the relative 

sensitivity coefficient of the proposed PCF structure is increasing where there is a significant 

improved mode confinement. It is evident from Fig. 2(d) that the relative sensitivity increases 

considerably, for all analytes under this study, as the operating wavelength increases. This increase 

can be linked to the noteworthy interaction between the liquid filled core holes and the light mode 

at the longer operating wavelengths. 

 

     
    (a)                          (b) 

 

      

  (c)        (d) 

Fig. 3. Variation of  the modal birefringence as a function of the (a) d1  where,  d= d2 = 1.5 µm and 

d3=0.5d  (b) d2 where,  d= d1 = 1.5 µm and d3=0.5d, (c) d3 where,  d= d1 = d2= 1.5 µm and (d) d1 

& d2 ,where  d= 1.5 µm and d3=0.5d at λ = 1 µm . 
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Previously, Yang et al. [5] have presented the impact of the cladding air hole diameter, d on the 

birefringence and confinement losses. It has been found that the birefringence and confinement 

losses are decreasing considerably with the increase in the air hole diameter. Our FEM simulations 

have confirmed the findings reported by the authors in Ref. [5]. Meanwhile, virtuous light 

confinement causes higher light analyte interaction. Therefore, the sensitivity of the proposed PCF 

is increasing sharply. Furthermore, our simulation results have shown that the single mode 

operation is directly linked to the construction geometry and the size of the air holes in the cladding 

region of the proposed PCF. Therefore, in our study in order to achieve single mode operation 

together with significant amounts of birefringence, sensitivity and low losses the optimum 

cladding air hole size, d is fixed to 1.5µm.  

 

In order to observe the impact of the core holes on the propagation characteristics of the proposed 

PCF sensor, we have investigated the key design parameter such as; d1, d2, and d3 when the 

supplementary core holes (d1 and d3) are filled with various analytes.  

 

 

The influence of parameters d1, d2, and d3 on the PCF birefringence is illustrated in Fig. 3 (a), (b) 

and (c). As can be seen from our simulation results presented in these figures, the birefringence is 

increasing when the refractive index of the analytes, under study, is decreasing. By comparing 

results shown in Fig. 3 (a), Fig. (b) and Fig.3 (c), one can evidently see that the size of the d2 has 

superior impact on the birefringence, whereas the influence of the d3 is insignificant. In order to 

further optimise the PCF obtained results, we have increased the diameter of d1 and d2 

concurrently, and results are illustrated in Fig. 3 (d). As it can be observed from this figure, the 

birefringence magnitude for all three analytes under study has increased almost 15% compared to 

results obtained in Fig. 3 (b).    

 

The field confinement and its deterioration rate have a central role in the propagation properties of 

the proposed PCF structure. The confinement loss of the proposed PCF sensor is one of the most 

critical parameter in the practical applications. Variation of the confinement loss as a function of 

diameters d1, d2, and d3 for various analytes are illustrated in Fig. 4 (a), (b), (c) and (d).  It may be 

seen from these figures that confinement losses are decreasing when the refractive index of the 

analytes are increasing. Figure 4 (a), (b), (c) shows that the dimensions of each d1, d2, and d3 have 

similar impact on proposed PCF confinement losses. However, a sharp increase can be realised 

when the diameter of d1 and d2 is increased concurrently. 

 

As it has been presented in Ref. [5], the confinement loss of the proposed PCF structure can be 

minimised by increasing the number of air hole rings in the cladding region (see Fig. 7 in Ref. [5]). 

Our simulations also have verified and confirmed that the confinement losses of the proposed PCF 

can be reduced significantly by increasing the number of air hole rings surrounding the core 

without effecting the birefringence and sensitivity excessively. 

 

 Next, sensitivity feature of the proposed PCF sensor is investigated by calculating the sensitivity 

coefficient r using eq. (3); the obtained results have been illustrated in Fig. 5. Simulation results 

indicate that the relative sensitivity of the PCF structure increases when supplementary core holes 

are filled with higher index samples. This phenomenon is due to the fact that the optical mode is 
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more confined in the core region when higher index analytes are used. This phenomenon can be 

realised as well when we investigate the obtained results in Fig. 4. The electromagnetic power 

interaction between the samples and the light is increasing when the greater index analytes are 

used, consequently this is triggering the increase of the sensitivity coefficient.  

 
 

      
   

(a)        (b) 

     
 

(c)        (d) 

 

Fig. 4. Variation of  the Confinement Loss as a function of  the (a) d1  where,  d= d2 = 1.5 µm and 

d3=0.5d  (b) d2 where,  d= d1 = 1.5 µm and d3=0.5d, (c) d3 where,  d= d1 = d2= 1.5 µm and (d) d1 

& d2 ,where  d= 1.5 µm and d3=0.5d at λ = 1 µm . 
 

 

From Fig. 5 (a), (b), (c) and (d), it can be seen that the diameter d2 has a major influence on the 

sensitivity coefficient, whilst the effects of d1 and d3 is almost negligible. Similar trends can be 

observed for the birefringence, the sensitivity coefficient of the proposed PCF is increasing by 

roughly 12% when the diameter of d1 and d2 is increasing concurrently for na = 1.354 and na = 

1.366. It is worth noting that the influence of the concurrent increase in the d1 and d2 are negligible 

when the core holes are filled with na = 1.33. 
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Next we investigate the field profiles of the proposed PCF structure when the sensing region is 

filled with analyte. Fig. 6 shows the field profiles of the dominant Ex component of the fundamental 

𝐻𝐸11
𝑥  mode of the proposed PCF structures when the core holes are filled with ethanol (na = 1.354). 

 

        
 

                                         (a)      (b) 
 

           
          

   (c)                     (d) 
 

Fig. 5. Variation of  the sensitivity coefficient as a function of the (a) d1  where,  d= d2 = 1.5 µm 

and d3=0.5d  (b) d2 where,  d= d1 = 1.5 µm and d3=0.5d, (c) d3 where,  d= d1 = d2= 1.5 µm and (d) 

d1 & d2 ,where  d= 1.5 µm and d3=0.5d at λ = 1 µm . 

 

It can be clearly seen from Fig. 6 (a) and (b) that the electric field distribution in x-axes is squeezed 

as a result of the increase in d1 or d2. This will lead to an increase in birefringence and relative 

sensitivity. Furthermore, it can be seen from Fig. 6 (d) that the electric field is deformed and the 

light tends to leak towards the y-axes. This phenomenon is due to the increase of the birefringence, 

confinement losses and the sensitivity coefficient. Since, the smaller air holes, d3 are positioned at 

the y-axis, concurrent increase in the diameters of d1 and d2 are expected to increase the power 

interaction between the light and the analyte. 

 

It is well known that the nonlinear coefficient is inversely proportional to the effective area [5]. 

Therefore, a small effective mode area leads to a high nonlinear coefficient that would be useful 
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in the various applications. The nonlinear coefficient of proposed PCF structure was previously 

studied in Ref. [5]. It can be seen from Fig. 6 that proposed PCF structure exhibits relatively small 

effective mode area. Our simulations show that the nonlinear coefficients of the illustrated field 

profiles of x-polarised HE11 mode are reported as (a) 49,4 W-1.km-1 (b) 48 W-1.km-1 (c) 51,3 W-

1.km-1  (d) 50,8W-1.km-1. These results match well with the results presented in Ref. [5]. 

 

     
 

                      (a)                  (b) 
 

    
            

                    (c)                                             (d) 
 

Fig. 6. The field profiles of the dominant Ex component of the fundamental LP01 mode with na= 

1.354 (a) d1 =1.8 µm, d2 =1.5 µm, d3=0.5d (b) d2 =1.8 µm, d1 =1.5 µm, d3=0.5d (c) d3 =0.95 µm 

and d2= d1 = 1.5 µm (d) d2= d1 = 1.8 µm and d3=0.5d. where, d = 1.5 µm at λ = 1 µm.  
 

 

 Lastly, considering the fabrication viability and its uses, it becomes imperative to evaluate and 

visualize the development of the suggested PCF structure. In addition, the fibre holes have to be 

filled with analyte/liquid such that it does not damage the operability of the fibre. The laser light 

should be very close to the single mode operation so as to attain the desired sensitivity. The PCF 

holes can be selectively filled with analytes by using a variety of methods. It needs to be mentioned 

that in the suggested PCF structure, the intricacy of analyte filling has shown a subtle increase, 

essentially in the core region. A distinct technique was put forward by Huang et al. [28] which 

permit selective filling of the air holes within air-core PCFs and developing different operational 

PCFs for various applications. The authors have particularly shown that any cladding hole or 

simply the supplementary core holes can be filled. In the filling process, pressure can be put on 

the UV-curable polymer within the PCF. Luo et al [29] and Gerosa et al. [30] have recently 

demonstrated experimentally that there can be efficient fabrication of the PCF structures with 
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liquid filled cladding/core holes with the help of identical techniques. For this purpose, the PCF 

structure suggested in this paper can be fabricated with the existing nanotechnology which shows 

substantial benefits with respect to important sensor features, for instance high sensitivity, high 

birefringence, and fewer confinement losses.  

 

VI. CONCLUSION 

 

A nonlinear Photonic Crystal Fiber (PCF) sensor is illustrated in this paper which shows high 

sensitivity and high birefringence along with reduced confinement losses for liquid analyte sensing 

applications. It has been shown in the numerical outcomes obtained that there can substantial 

improvements in relative sensitivity and birefringence when the sizes of air holes in the central 

region of the suggested PCF structures can be altered for different analytes. In addition, it was 

found in our study that there is a significant effect of d1 and d2 diameter dimensions on the overall 

performance of the suggested PCF with respect to birefringence and relative sensitivity. It has been 

found in our numerical findings that it is possible to attain a high birefringence of 10-3 and adequate 

sensitivity levels when the suggested nonlinear PCF sensor is at a wavelength of 1µm. 

Consequently, the PCF structures that have been suggested have a greater ability to carry out liquid 

analyte sensing. This makes these PCF structures optimal for being used in biological and chemical 

applications [8, 31].  
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