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Abstract

The issue of reliable authentication is of increasing
importance in modern society. Corporations, businesses
and individuals often wish to restrict access to logical or
physical resources to those with relevant privileges. A
popular method for authentication is the use of biometric
data, but the uncertainty that arises due to the lack of
uniqueness in biometrics has lead there to be a great
deal of effort invested into multimodal biometrics. These
multimodal biometric systems can give rise to large,
distributed data sets that are used to decide the
authenticity of a user. Bayesian Model Averaging (BMA)
methodology has been used to allow experts to evaluate
the reliability of decisions made in data mining
applications. The use of Decision Tree (DT) models
within the BMA methodology gives experts additional
information on how decisions are made. In this paper we
discuss how DT models within the BMA methodology can
be used for authentication in multimodal biometric
systems.

Keywords: Identification of person, Decision-making,
Bayes procedure, Stochastic approximation, Trees

1. Introduction

There is an increasing requirement to place restrictions
on access to both physical and logical resources. The
days where businesses had open door policies, or even
people in their own home leaving back doors unlocked
and open are long gone. Businesses and individuals now
have richer assets than ever before and the risk of these
being stolen has increased. If we consider individuals,
many now have expensive electronic equipment that is
easy to remove from an office or home if unauthorised
access has been gained. The problem is however far
worse than simply losing a replaceable asset. Modern
businesses and consumers have data-rich assets that if
lost can have serious ramifications.

Industrial espionage no longer requires the theft of
large equipment or files, rather the theft of a database or a
portable computer carrying sensitive information can

often pose a much more significant threat. In order to
overcome such issues, both businesses and individuals
often employ some level of security. This security barrier
is designed to allow only those with the correct level of
authorisation into a building or a computer system.

Traditionally much of the physical security was
implemented using locks and keys. Similarly the majority
of computer systems were originally accessed using a
text-based password, if there was any restriction at all.
However, over time there has been a shift away from
these traditional methods of authentication for a number
of reasons.

Physical access systems have moved away from
physical devices such as the lock and key to
authentication through keypads (by way of a Personal
Identification Number (PIN) or a General Access Code)
and swipe cards (using technologies such as Radio-
Frequency Identification (RFID), magnetic strips or
embedded chips (smart cards)).

Conversely, access to computer systems has started to
move away from passwords and PINs to the use of
physical devices such as proximity tokens (utilising
technologies such as RFID) and dongles.

These well-established techniques for authentication
are known as token-based and knowledge-based methods
and can be categorised as shown in Table 1.

Table 1. Classification of authentication

techniques.

Classification Example
Biometrics-based
- static Physical attribute, e.g. fingerprint, iris

scan
- dynamic Behavioral attribute, e.g. keystroke

dynamics, signature dynamics
Token-based Something you possess, e.g. swipe

card, key
Knowledge-based Something you know, e.g. password,

PIN

This table also features the two forms of biometric
technique that can be used for authentication: static and
dynamic. Basically these can be thought of as things you
are and things you do. These biometric techniques are
used to overcome some of the weaknesses of token-based
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and knowledge-based methods. Often a combination of
biometrics is used for authentication. However the
mixing of biometric data coming from different sources
makes the estimation of uncertainty in decisions a
difficult problem. For this reason there is a requirement
for an effective decision-making process [1, 2]. In this
paper we discuss the use of Decision Trees (DTs) within
the Bayesian Model Averaging (BMA) methodology [3,
4] as a tool to assist in making reliable decisions on
whether to authenticate a user.

Practically, the BMA can be implemented on the base
of a Markov Chain Monte Carlo (MCMC) approximation
technique based on the random sampling from the
posterior distribution [5, 6]. For real-world applications
when the dimensionality of a model cannot be
predefined, the MCMC technique has been extended by
Reversible Jumps (RJ) introduced in [7]. It is also
important to note that when domain experts cannot give
the priors on structure and parameters of DTs, the
required priors can be defined implicitly within a
sweeping strategy of the Bayesian DT averaging
suggested in [8].

In our experiments we compare the performance of
the existing and suggested BMA techniques on some data
sets taken from the UCI Machine Learning Repository
[9]. The classification reliability is compared within an
Uncertainty Envelope technique dealing with the class
posterior distribution and a given confidence probability
described in [10]. This technique provides realistic
estimates of the reliability, which can be interpreted in
statistical terms [11]. Using such an evaluation technique
in our comparative experiments, we find that the
Bayesian DT technique with the sweeping strategy is
superior to the existing RJ MCMC technique.

Section 2 of the paper introduces the problem of
biometric authentication, and then sections 3 and 4
present the bases of BMA and RJ MCMC techniques. In
section 5 we describe the idea of Bayesian DT technique
with a sweeping strategy and then in section 6 briefly
describe the Uncertainty Envelope technique used in our
comparative experiments. The experimental results are
presented in section 7, and section 8 concludes the paper.

2. Biometric Authentication

Biometric authentication methods are becoming
increasingly widespread. Popular techniques involving
static biometrics include:

Facial Recognition Systems – both well-
established 2D systems and the recently
developed 3D systems such as that from
A4Vision [12]
Retina Scanning Systems
Iris Scanning Systems
Fingerprint Analysis Systems
DNA Analysis
Facial Thermogram
Hand Geometry

Vascular patterns – Fujitsu are leading research
on a non-intrusive method for authentication
that relies on a near infrared beam being
directed at the palm. The haemoglobin in the
blood absorbs the IR rays that give rise to an
image of the vascular pattern within the palm
Palmprint
Ear Shape

In addition to these methods involving static
biometrics, the use of dynamic biometrics, while
currently not as mature, are starting to gain popularity.
The major methods for dynamic biometric authentication
are:

Gait
Voice Recognition
Keystroke Dynamics
Signature Recognition Systems – these have
become increasingly sophisticated, and involve
matching the pressure, speed, characteristics and
overall image of a signature

Multimodal biometric authentication systems use
multiple applications to capture different types of
biometrics and then aggregate this data in order to make a
decision whether to authenticate or not. For example, a
multimodal system might involve information from
sensors detecting gait. As a user approaches a physical
resource, such as a computer laboratory, cameras can
capture the motion and store the data digitally. The user
may then have to say a particular phrase into a
microphone outside the door to the laboratory and
another camera can be used to capture an image of the
users face. The data from all three sensors is then used in
the decision-making process.

Having gained access into the facility, the user may be
required to present a fingerprint, say, in order to gain
entry to the logical resources. The earlier data from the
three sensors can now be used to inform the level of
tolerance required in the fingerprint match. If a user is
then permitted entry to the system, keystroke dynamics
might be used to verify that only the authorised user is
accessing the system at any point in time. Further to
being able to use the data from a number of sensors to
decide upon authenticity, multimodal biometric
authentication systems also have the advantage that they
can compensate for missing or poor data from a
particular sensor. In the case where a sensor is a camera,
it may be that some dust or foreign body has corrupted
the view through that camera. This degradation in the
data can be partially overcome by considering the data
from the other sensors. Had this been the sole capture
device, problems would have arisen that required
immediate attention.

Problems regarding the quality or consistency of the
capture of biometric data may not necessarily be due to a
fault or error in the sensor. It is estimated that 5% of the
population does not have fingerprints that are legible.
The data gathered through the microphone may not
match closely enough to the stored template if the user
has a cold or is short of breath due to running along the
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corridor. Again if either of these sensors was the sole
data capture device, obvious problems would ensue. In a
multimodal biometric authentication system such issues
are less of a problem.

The use of such varied sources of data obviously
makes the estimate of uncertainty in decisions a difficult
problem. To tackle this problem we suggest the use of the
BMA methodology described next.

3. The Bayesian Model Averaging
Methodology

Nowadays the methodology of BMA is widely used
for estimating the reliability of decisions. Domain experts
responsible for making reliable decisions are also
interested in interpretability of decision models. For this
reason DT providing a graphical presentation of
decisions is an attractive model for the experts [1-6]. The
main idea of using DT models is to recursively partition
data points in an axis-parallel manner. Such models
provide natural feature selection and uncover the features
which make the important contribution to the outcome.
The resultant DT models can be easily understood by
experts.

By definition, DTs consist of splitting and terminal
nodes, which are also known as tree leaves. DTs are said
to be binary if the splitting nodes ask a specific question
and then divide the data points into two disjoint subsets,
say the left or the right branch. Note that the number of
the data points in each split should not be less than that
predefined by a user. The terminal node assigns all data
points falling in that node to a class of majority of the
training data points residing in this terminal node. Within
a Bayesian framework, the class posterior distribution is
estimated for each terminal node [5, 6].

The required estimates can be achieved on the base of
Bayesian MCMC methodology of sampling from the
posterior distribution [4-6]. This technique has revealed
promising results when applied to some real-world
problems.

The MCMC methodology has been extended by
Reversible Jumps (RJ) in order to deal with models of a
variable dimensionality [7]. The RJ MCMC technique
making such moves as birth and death allows the DTs to
be induced under the priors given on the shape or size of
the DTs. However, making such moves, the RJ MCMC
should keep the balance between the birth and death
moves in order to obtain the unbiased estimates of the
posterior [5-8].

Within the RJ MCMC technique the proposed moves
for which the number of data points falling in one of
splitting nodes becomes less than the given number are
assigned unavailable. Obviously the priors given on the
DTs are dependent on the shape of class boundaries as
well as on the level of noise in training data. Therefore
the lack of a priori information can cause the overfitting
of DTs and, as a consequence, the bias in the desired
class posterior estimates [13].

Moreover the standard RJ MCMC technique of
averaging over DTs cannot keep the balance between the
death and birth moves. This happens because within the
RJ MCMC some proposed DTs which cannot provide the
given number of data points allowed being in the splitting
nodes are assigned unavailable [8].

When a priori information of the favourite shape of
DTs is unavailable, the Bayesian DT technique with a
sweeping strategy has revealed a better performance [8].
Within this strategy the prior given on the number of DT
nodes is defined implicitly and dependent on the given
number of data points allowed being at the DT splits. So
the sweeping strategy gives more chances to induce the
DTs containing a near optimal number of splitting nodes
required to provide the best generalisation. At the same
time the number of data points allowed to be in the
splitting nodes can be reasonably reduced without
increasing the risk of overfitting the DTs.

4. The Bayesian Decision Tree Technique

For a classification model given with vector of
parameters , the predictive distribution we are interested
is written as an integral over the parameters 

DDxDx dpypyp )|(),,|(),|(

where y is the predicted class (1, …, C), x = (x1, …, xm) is
the m-dimensional input vector, and D are the given
training data.

This integral can be analytically calculated only in
simple cases, and in practice part of the integrand, which
is the posterior density of conditioned on the data D,
p(  |D), cannot usually be evaluated. However if values
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This is the basis of the MCMC technique for
approximating integrals [6]. To perform such an
approximation, we need to run a Markov Chain until it
has converged to a stationary distribution. Then we can
collect N random samples from the posterior p( |D) to
calculate the desired predictive posterior density.

Let us define a classification problem presented by
data (xi, yi), i = 1, …, n, where n is the number of data
points, and yi  {1, …, C} is a categorical response.
Using DTs for the classification, we need to find the
probability tj with which an input x is assigned by
terminal node t = 1, …, k to the jth class, where k is the
number of terminal nodes in the DT. Initially we can
assign a Dirichlet prior for each terminal node.

The DT parameters are defined as = (si
pos, si

var, si
rule),

i = 1, …, k – 1, where si
pos, si

var and si
rule define the
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position, predictor and rule of each splitting node,
respectively. For these parameters the priors can be
specified as follows. First we can define a maximal
number of splitting nodes, say, smax = n – 1. Second we
draw any of the m predictors from a uniform discrete
distribution U(1, …, m) and assign },...,1{var msi

.

Finally the candidate value for the splitting variable xj =
si

var can be drawn from a discrete distribution U(xj
(1), …,

xj
(L)), where L is the number of possible splitting rules for

variable xj, either categorical or continuous.
Such priors allow us to explore DTs which split data

in as many ways as possible. However the DTs with
different numbers of splitting nodes should be explored
in the same proportions [6].

For a case when there is knowledge of the favoured
structure of the DT, we can define a prior by assuming
the a priori probability of further splits to be dependent
on how many splits have already been made above them
[6]. For example, for the ith terminal node the probability
of its splitting is written as

,)1()( isplit dip

where di is the number of splits made above i and ,  0
are given constants. The larger , the more the prior
favours “bushy” trees. For  = 0 each DT with the same
number of terminal nodes appears with the same a priori
probability.

To sample DTs of a variable dimensionality, the
MCMC technique exploits the Reversible Jump extension
[7]. To implement the RJ MCMC technique, Chipman et
al. [5] and Denison et al. [6] have suggested exploring
the posterior probability by using the following types of
moves.

Birth. Randomly split the data points falling in one of
the terminal nodes by a new splitting node with the
variable and rule drawn from the corresponding priors.

Death. Randomly pick a splitting node with two
terminal nodes and assign it to be one terminal with the
united data points.

Change-split. Randomly pick a splitting node and
assign it a new splitting variable and rule drawn from the
corresponding priors.

Change-rule. Randomly pick a splitting node and
assign it a new rule drawn from a given prior.

The first two moves, birth and death, are reversible
and change the dimensionality of . The remaining
moves provide jumps within the current dimensionality
of . Note that the change-split move is included to make
“large” jumps which potentially increase the chance of
sampling from a maximal posterior whilst the change-
rule move does “local” jumps.

The RJ MCMC technique starts drawing samples from
a DT consisting of one splitting node whose parameters
were randomly assigned within the predefined priors. So
we need to run the Markov Chain while a DT grows and
its likelihood is unstable. This phase is called burn-in and
it should be preset enough long in order to stabilize the
Markov Chain. When the Markov Chain becomes stable

enough, we can start sampling. This phase is called post
burn-in.

It is important to note that the DTs grow very quickly
during the first burn-in samples. This happens because an
increase in log likelihood value for the birth moves is
much larger than that for the others. For this reason
almost every new partition of data is accepted. Once a
DT has grown the change moves are accepted with a
very small probability and, as a result, the MCMC
algorithm tends to get stuck at a particular DT structure
instead of exploring all possible structures.

The size of DTs can rationally decrease by defining a
minimal number of data points, pmin, allowed to be in the
splitting nodes [2-6]. If the number of data points in new
partitions made after the birth or change moves becomes
less than a given number pmin, such moves are assigned
unavailable, and the RJ MCMC algorithm resamples such
moves.

However, when the moves are assigned unavailable,
this distorts the proposal probabilities pb, pd, and pc given
for the birth, death, and change moves, respectively. The
larger the DT, the smaller the number of data points
falling in the splitting nodes, and correspondingly the
larger is the probability with which moves become
unavailable. Resampling the unavailable moves makes
the balance between the proposal probabilities biased as
described in [8].

Because DTs are hierarchical structures, the changes
at the nodes located at the upper levels can significantly
change the location of data points at the lower levels. For
this reason there is a very small probability of changing
and then accepting a DT split located near a root node.
Therefore the RJ MCMC algorithm collects the DTs in
which the splitting nodes located far from a root node
were changed. These nodes typically contain small
numbers of data points. Subsequently, the value of log
likelihood is not changed much, and such moves are
frequently accepted. As a result, the RJ MCMC algorithm
cannot explore a full posterior distribution properly.

One way to extend the search space is to restrict DT
sizes during a given number of the first burn-in samples
as described in [6]. Indeed, under such a restriction, this
strategy gives more chances of finding DTs of a smaller
size which could be competitive in term of the log
likelihood values with the larger DTs. The restricting
strategy, however, requires setting up in an ad hoc
manner the additional parameters such as the size of DTs
and the number of the first burn-in samples.
Unfortunately, in practice, it often happens that after the
limitation period the DTs grow quickly again and this
strategy does not improve the performance.

Alternatively to the above approach based on the
explicit limitation of DT size, the search space can be
extended by using a restarting strategy as Chipman et al.
have suggested in [5]. Clearly, both these strategies
cannot guarantee that most of DTs will be sampled from
a model space region with a maximal posterior. In the
next section we describe our approach based on sweeping
the DTs.
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5. The Bayesian Averaging with a Sweeping
Strategy

In this section we describe our approach to decreasing
the uncertainty of classification outcomes within the
Bayesian averaging over DT models. The main idea of
this approach is to assign the a priori probability of
further splitting DT nodes to be dependent on the range
of values within which the number of data points will be
not less than a given number of points, pmin. Such a prior
is explicit because at the current partition the range of
such values is unknown.

Formally, the probability Ps(i, j) of further splitting at
the ith partition level and variable j can be written as

),1(
min

),1(
max

),(
min

),(
max),(

jj

jiji

s xx

xx
jiP ,                       (1)

where ),(
min

jix  and ),(
max

jix are the minimal and maximal

values of variable j at the ith partition level.

Observing this prior, we can see that ),1(
max

),(
max

jji xx  and
),1(

max
),(

min
jji xx  for all the partition levels i > 1. On the other

hand there is partition level k at which the number of data
points becomes less than a given number pmin. Therefore,
we can conclude that the a priori probability of splitting
Ps ranges between 0 and 1 for any variable j and the
partition levels i: 1 i < k.

From (1) it follows that for the first level of partition,
probability Ps is equal to 1.0 for any variable j. Let us
now assume that the first partition split the original data
set into two non-empty parts. Each of these parts contains
less data points than the original data set, and
consequently for the (i = 2)th partition either ),1(

max
),(

max
jji xx

or ),1(
max

),(
min

jji xx  for new splitting variable j. In any case,

the numerator in (1) decreases, and probability Ps

becomes less than 1.0. We can see that each new partition
makes values of the numerator and consequently the
probability (1) smaller. So the probability of further
splitting nodes is dependent on the level i of partitioning
of the data set.

The above prior favors splitting the terminal nodes
which contain a large number of data points. This is
clearly a desired property of the RJ MCMC technique
because it allows accelerating the convergence of the
Markov Chain. As a result of using prior (1), the RJ
MCMC technique of sampling DTs can explore an area
of a maximal posterior in more detail.

However, prior (1) is dependent not only on the level
of partition but also on the distribution of data points in
the partitions. Analyzing the data set at the ith partition,
we can see that value of probability Ps is dependent on
the distribution of these data. For this reason the prior (1)
cannot be implemented explicitly without the estimates of
the distribution of data points in each partition.

To make the birth and change moves within prior (1),
the new splitting values si

rule,new for the ith node and
variable j are assigned as follows. For the birth and

change-split moves the new value si
rule,new is drawn from a

uniform distribution: ),(~ ,1
max

,1
min

, jjnewrule
i xxUs .

The above prior is “uninformative” and used when no
information on preferable values of si

rule is available. As
we can see, the use of a uniform distribution for drawing
new rule si

rule,new, proposed at the level i > 1, can cause
the partitions containing fewer data points than pmin.
However, within our technique such proposals can be
avoided.

For the change-split moves, drawing si
rule,new follows

after taking new variable si
var,new: },{~ k

var,new
i SUs  where

Sk = {1, …, m}\si
var is the set of features excluding

variable si
var currently used at the ith node.

For the change-rule moves, the value si
rule,new is drawn

from a Gaussian with a given variance j:
),(~,

j
rule
i

newrule
i sNs , where j = si

var is the variable used

at the ith node.
Because DTs have hierarchical structure, the change

moves (especially change-split moves) applied to the first
partition levels can heavily modify the shape of the DT,
and as a result, its bottom partitions can contain fewer
data points than pmin. As mentioned in section 4, within
the Bayesian DT techniques [5, 6] such moves are
assigned unavailable.

Within our approach after birth or change moves there
arise three possible cases. In the first case, the number of
data points in each new partition is larger than pmin. The
second case is where the number of data points in one
new partition is larger than pmin. The third case is where
the number of data points in two or more new partitions
is larger than pmin. These three cases are processed as
follows.

For the first case, no further actions are taken, and the
RJ MCMC algorithm runs as usual.

For the second case, the node containing an
unacceptable number of data points is removed from the
resultant DT. If the move was of birth type, then the RJ
MCMC resamples the DT. Otherwise, the algorithm
performs the death move.

For the last case, the RG MCMC algorithm resamples
the DT.

As we can see, within our approach the terminal node,
which after making the birth or change moves contains
fewer than pmin data points, is removed from the DT.
Clearly, removing such unacceptable nodes turns the
random search in a direction in which the RJ MCMC
algorithm has more chances to find a maximum of the
posterior amongst shorter DTs. As in this process the
unacceptable nodes are removed, we named such a
strategy sweeping.

After a change move the resultant DT can contain
more than one node splitting fewer than pmin data points.
However this can happen at the beginning of the burn-in
phase, when the DTs grow, and this is unlikely to
happen, when the DTs have grown.

Next we describe the Uncertainty Envelope technique
suggested to estimate the classification uncertainty of
multiple classifier systems.
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6. The Uncertainty Envelope Technique

In general, the Bayesian DT strategies allow sampling
the DTs induced from data independently. In such a case,
we can naturally assume that the inconsistency of the
classifiers on a given datum x is proportional to the
uncertainty of the DT ensemble. Let the value of class
posterior probability P(cj|x) calculated for class cj be an
average over the class posterior probability P(cj|Ki, x)
given on classifier Ki:

,),|(
1

)|(
1

N

i
ijj KcP

N
cP xx

where N is the number of classifiers in the ensemble.
As classifiers K1, …, KN are independent of each other

and their values P(cj|Ki, x) range between 0 and 1, the
probability P(cj|x) can be approximated as follows

N

i
iij tyI

N
cP

1

),|,(
1

x)|( x

where I(yi, ti) is the indicator function assigned to be 1 if
the output yi of the ith classifier corresponds to target ti,
and 0 if it does not.

It is important to note that the right side of the above
equation can be considered as a consistency of the
outcomes of the DT ensemble. Clearly, values of the
consistency,

N

i
ii tyI

N 1

)|,(
1 x ,

lie between 1/C and 1.
So we can conclude that the classification confidence

of an outcome is characterized by the consistency of the
DT ensemble calculated on a given input x. Clearly, the
values of  are dependent on how representative the
training data are, what classification scheme is used, how
well the classifiers were trained within a classification
scheme, how close the datum x is to the class boundaries,
how the data are corrupted by noise, and so on.

From the above consideration, we can assume that
there is some value of consistency 0 for which the
classification outcome is confident, that is the probability
with which a given datum x could be misclassified is
small enough to be acceptable. Given such a value, we
can now specify the uncertainty of classification
outcomes in statistical terms. The classification outcome
is said to be confident and correct, when the probability
of misclassification is acceptably small and 0.

Additionally to the confident and correct output, we
can specify a confident but incorrect output referring to a
case when almost all the classifiers assign a datum x to a
wrong class whilst 0. Such outcomes tell us that the
majority of the classifiers fail to classify a datum x
correctly. The confident but incorrect outcomes can
happen for different reasons, for example, the datum x
could be mislabelled or corrupted, or the classifiers

within a selected scheme cannot distinguish the data x
properly.

The remaining cases for which  < 0 are regarded as
uncertain classifications. In such cases the classification
outcomes cannot be accepted with a given confidence
probability 0 and the DT ensemble labels them as
uncertain.

The above three characteristics, the confident and
correct, confident but incorrect, and uncertain outcomes,
seem to provide a practical way of evaluating different
types of DT ensembles on the same data sets. Comparing
the ratios of the data points assigned to be one of these
three types of classification outcomes, we can
quantitatively evaluate the classification uncertainty of
the DT ensembles. Depending on the costs of types of
misclassifications in real-world applications, the value of
the confidence consistency 0 should be given, say, equal
to 0.99.

Next we use the Uncertainty Enveloped technique to
compare the performance of the existing and proposed
Bayesian RJ MCMC techniques on some real world data
sets.

7. Experiments

Table 2 lists the characteristics of the Image and
Satimage data sets, taken from the UCI Repository [9],
which are used in our experiments; here m, train, and test
are the numbers of classes, input variables, training and
test examples, respectively. For both domain problems,
the number of classes C = 7.

Table 2. UCI domain problems.

Data Characteristics# Data
C m train Test

1 Image 7 19 210 2100

2 Satimage 7 36 4435 2000

First we applied the Bayesian DT technique with the
restarting strategy, described in [5], running 2000
samples for burn-in and 2000 post burn-in samples 50
times. The value of pmin was set equal to 5 for the Image
data and 20 for the Satimage data.

Table 3 shows the performance of this technique. The
Table 3 also provides the quantitative evaluations of
uncertainty in classification outcomes calculated within
the Uncertainty Envelope technique.

Table 3. Performances of Bayesian DTs with

the restarting strategy.

# Data Perform, Uncertainty Envelope, %

% Correct Uncertain Incorrect

1 Image 94.3 22.4 77.6 0.0
2 Satimage 87.9 39.7 59.7 0.5
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The performance of the Bayesian DT technique with
the sweeping strategy is shown in Table 4 which also
provides the quantitative evaluations of the uncertainty.

Comparing the above Bayesian DT techniques, we can
see that on the Image and Satimage data, the restarting
strategy slightly outperforms the sweeping strategy.

Table 4. Performances of Bayesian DTs with

the sweeping strategy.

Data Perform Uncertainty Envelope, %#
% Correct Uncertain Incorrect

1 Image 93.0 63.1 36.4 0.5

2 Satimage 86.5 65.1 32.8 2.1

However, the comparison in the terms of the
classification uncertainty shows us that the proposed
sweeping strategy significantly outperforms the restarting
strategy. On both domain problems sure correct
classification rates of the sweeping strategy are higher
that those of the restarting strategy. An explanation of
this is that the Bayesian DT technique with the sweeping
strategy is able to find more, shorter DTs than those of
the technique with the restarting strategy. Clearly, for a
shorter DT, the classification uncertainty is smaller. Thus
we can conclude that within the sweeping strategy the
Bayesian DT technique can provide more stable results in
terms of the classification uncertainty.

It is important to note also that the Bayesian DTs
sampled within the sweeping strategy always have a
smaller proportion of uncertain classifications. Certainly
it is an important property for authentication systems.

8. Conclusion

In this paper we have discussed issues surrounding the
effective authentication of users based upon biometrics.
Using multimodal biometrics gives rise to large
heterogeneous data sets that require fast effective
searching for decision-making.

The use of the RJ MCMC methodology of stochastic
sampling from the posterior distribution makes Bayesian
DT techniques effective for applications in which risk
evaluation is of crucial importance. Existing techniques,
exploring the space of DTs parameters, may prefer
sampling DTs from the local maxima of the posterior
instead of properly representing the posterior. This
affects the evaluation of the posterior distribution and, as
a result, causes an increase in the decision uncertainty.
This negative effect can be reduced by averaging the DTs
obtained in different starts or by restricting the size of
DTs during the burn-in phase.

As an alternative way of reducing the classification
uncertainty, we have suggested the Bayesian DT
technique exploiting the sweeping strategy. Within this
strategy, DTs are modified after birth or change moves
by removing the splitting nodes containing fewer data
points than acceptable.
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