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The design of appropriate moving target search (MTS) algorithms for computer-generated bots poses serious challenges as
they have to satisfy stringent requirements that include computation and execution efficiency. In this paper, we investigate the
performance and behaviour of existing moving target search algorithms when applied to search-and-capture gaming scenarios. As
part of the investigation, we also introduce a novel algorithm known as abstraction MTS. We conduct performance simulations
with a game bot and moving target within randomly generated mazes of increasing sizes and reveal that abstraction MTS exhibits
competitive performance even with large problem spaces.
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1. Introduction

In most RPG/adventure-based computer games, different
types of bots act as adversaries to players. For example, in
the recently launched Hellgate [1], players need to defend
against and fight computer-generated demonic hordes. In
such games, each generated bot is typically incorporated
with suitable algorithms that enable it to locate and move
towards a player. Each bot also has a “detection range or
area” within which, it can detect a player. Unlike existing
algorithms for static targets [2, 3], algorithmic designs for
moving target search (MTS) algorithms are inherently more
involved. The computational and memory requirements are
significant. In some computer games, search algorithms
can take up as much as 70% of CPU time [4–6]. This
is due to the large number of objects (e.g., player, NPC,
building, and walls) that need to be taken into consideration
in the game environment [7]. The computational and
memory requirements are also high when multiple bots
communicate to find strategic paths as shown in our earlier
work on Team AI [8]. Graphics also consume a significant
proportion of computational resources leaving a limited
amount for game AI [4]. Many contemporary graphics-
intensive computer games are real-time, however, which

means that bot responses to a player must be made as soon
as possible. Such a scenario poses conflicting demands on the
design of MTS algorithms.

This paper presents a study of the performance and
behaviour of existing moving target search (MTS) algorithms
in a maze search-and-capture scenario. As part of the study,
we include a novel MTS algorithm called abstraction MTS
and evaluate its performance and behaviour against the
existing algorithms. Section 2 of this paper reviews three
existing widely used MTS algorithms. Section 3 states the
definitions and notations on which subsequent sections
are based. The design of the abstraction MTS algorithm
is detailed in Section 4. Section 5 describes the perfor-
mance and behavioural analyses. The paper concludes with
Section 6 followed by the Acknowledgments and References.

2. Survey

In a contemporary player-bot engagement-based computer
game, the bot’s response and behaviour are designed to be
as realistic as possible. For example, a bot would be able to
sense (detect) a player within its visibility region and not
beyond. To make the game more engaging and playable,
a typical bot should not be able to detect beyond some
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finite region. Deep look-ahead search techniques that would
be useful in certain games like chess would add an unfair
advantage to a bot’s capabilities and reduce the engagement
and playability of the game [9]. In our work, therefore, we
focus on algorithm designs that exploit “neighbourhood”
information—information that can be determined within a
finite detection region surrounding a bot. In this section,
we review three well-known existing MTS algorithms for
moving targets: basic moving-target search, weighted mov-
ing target search, and commitment and deliberation moving
target search algorithms.

2.1. Basic Moving Target Search. The basic moving target
search (BMTS) algorithm [10] is a generalisation of the
learning real-time A∗ algorithm [11]. A matrix of heuristic
values is maintained during the search process to improve
their accuracy. The upper bounds on space and time
complexities of B-MTS are N2 and N3, respectively, where N
is the number of states in the problem space. Although MTS
could converge to an optimum path (solution) eventually, it
suffers from heuristic depression [10], which is a set of states
with heuristic values not exceeding those of all neighbouring
states. This may occur since heuristic value updates are
localised leaving state inaccuracies over other areas in the
problem space. In a heuristic depression, an agent repeatedly
traverses the same subset of neighbouring states without
visiting the rest. The agent may also continue to look for
a shorter path even though a fairly good path to the target
has been found. This would incur additional computational
overheads and reduce bot performance during game play.

2.2. Weighted Moving Target Search. In certain scenarios, an
optimal solution may not be needed and suboptimal paths
may be found in a shorter time. The weighted moving target
search (WMTS) algorithm [12] reduces the amount of explo-
ration in MTS and accelerates convergence by producing a
suboptimal solution. It allows a suboptimal solution with ε-
error and δ-search (real-time search with upper bound) to
achieve a balance in solution path quality and exploration
cost. During the search, heuristic values are brought as close
as possible to, but not reaching, the actual values. So, there
is no guarantee that the search will eventually converge to
an optimal solution. It is also important to determine a
value of δ such that it can restrain exploration and find
better solutions. The amount of memory space increases as
δ increases.

2.3. Commitment and Deliberation Moving Target Search.
With the commitment and deliberation moving target search
(CDMTS) algorithm [10], the agent may ignore some of
the target’s moves. The agent only updates the target’s
moves when the agent is not in a heuristic depression. The
commitment to the current target state increases if the agent
moves in a direction where the heuristic value is reducing. If
the agent is in a depression, it ignores the target’s moves and
commitment is set to 0. During deliberation, real-time search
is performed when heuristic difference decreases, and offline
search is performed when the agent is in heuristic depression.

The offline search is used to determine the boundary of the
heuristic depression. The CDMTS algorithm improves upon
the efficiency of BMTS since the agent can exit from the
heuristic depression faster.

3. Preliminaries

To simplify the problem, we prohibit movements in the
third dimension (e.g., jumping, climbing) by either the bot
or the player. The problem space is then reduced to that
of a two-dimensional (2D) region, whereby movements of
both bot and player are restricted to left, right, forwards, and
backwards. We also require that the size of the problem space
can be varied with obstacles generated and placed randomly.
The unobstructed locations (no obstacles) in the maze are
defined as a set of states and all traversals between a state and
neighbouring states are defined by a set of edges with edge
cost = 1.

In the following, we will use the terms “agent” or “bot”
and “target” or “player” interchangeably. From each state,
the agent or target can move to any of a maximum of
four neighbouring states (representing locations to the left,
right, forward, and backward directions) if unobstructed. The
target moves randomly and slower than the agent so that the
target will be acquired in a finite time. The goal for the agent
is then to find a path from starting state s to the current target
state g, if there is at least one path from s to g. The goal is
accomplished if both agent and target occupy the same state.
We define the following:

s = current state;

g = goal state;

s′ = other state (not s or g);

succ(s) = the set of successor states of s (neighbour
states of state s);

j(a, b) = total edge cost from state a to state b;

h(a, b) = heuristic value from state a to state b;

h∗(a, b) = minimal heuristic value from state a to
state b considering all alternative paths;

f (s, g) = j(s, s′) + h(s′, g), where f is the computed
cost of a path from s to g.

To guarantee the completeness of the algorithm, we
assume that the minimum heuristic value is never overes-
timated, that is, h(a, b) ≤ h∗(a, b) [10]. This is the case
in the previous 3 algorithms surveyed. Information that
includes the maze configuration, target position, and target
movement pattern are not available initially. As shown in
Figure 1, the agent can only detect the target’s position if the
target is within detection range r, regardless of whether there
is an obstacle between them.

To simplify the calculation, the detection area is repre-
sented as a square and the value r is greater than one to
emulate a bot equipped with above average human player’s
sensory-detection capabilities. For comparison purpose,
the target (human) may be assumed to have a detection
area with r = 1. This is typical in the more challenging
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Figure 1: Target is detected within range.

contemporary games. In the case of BMTS, WMTS, and
CDMTS, the agent does not know the value of h∗(a, b) until
it finds an optimal solution. A path (s0, s1, . . . , sn) is optimal
if and only if h(si) = h∗(si) for 0 ≤ i ≤ n, where h∗(si)
equals the actual cost from s to the goal and h(si) equals
the heuristic value. Heuristic value is computed with the
Manhattan distance method.

4. Abstraction Moving Target Search
Algorithm Design

Each of the existing MTS algorithms employs a heuristic
array table in its learning process. For each state s, we need
to store the heuristic value with all states. That is, we need
to store the state pairs: h(s, k), where k ∈ S (problem state
space) except h(s, s) = 0. Group values are stored in a 2D-
array, abstract. Also, since h(x, y) = h(y, x), the total memory
needed is upper-bounded by (n2 − n)/2, where n is the
number of states in S. To solve this problem, we apply the
abstraction maze approach. Our approach is to have a 2-level
search as illustrated by an example of an abstraction maze in
Figure 2.

Figure 2 shows that when the agent detects the target, it
checks if the target position belongs to a group. If so, the
agent will determine the best abstraction move list AL and
required real move list(s) RL to acquire the target. In this
example, AL = {4, 1, 2, 5}. Using group numbers to simplify
representation, three real move lists would be generated as
follows: real move list 1 = {4, 1, 1, 1}, real move list 2 =
{1, 1, 2}, and real move list 3 = {2, 2, 5, 5, 5}. Each real move
list contains a movement path up to the next group head and
the last leading up to the target.

Specifically, each node x in the abstraction maze may be
labeled with a number which indicates an associated group,
grx. These group values are stored in a 2D-array labeled
abstract. A group p also has a group head, hd(p). The group
head is used as a base to measure the cost (distance) to
all nodes in the same group. The distance from a node s
to its group head, grs, must be less than some constant
abstractDistance. That is, j(s,hd(grs)) < abstractDistance. In
the example in Figure 2, abstractDistance is equal to 3. Each
group also maintains a list of its neighbours. For example,
the neighbours of group 1 are groups 2, 3, and 4.

Agent

Group
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Target

Group
heads

5 5 5
2
2
2

4 4
4
1
1
1 1 1
1
1 3 3 3

Real move list 1

Real move list 2

Real move list 3

Figure 2: Abstraction maze example.

In the initialisation step of the algorithm, the starting
point of the agent is set at the location of the head of group
1 and number AbstractNode is set to 1. The variable number
AbstractNode is defined as the number of groups that has
been created. During exploration, after the agent has moved
to a new state (position) s′, it will check if this node has
a group. If it has not, the agent will check if the nearest
head distance is less than abstractDistance. If it is, then apply
setAbstract method. In setAbstract method, the current node
will be grouped with the nearest group head. If the nearest
head distance is not less than abstractDistance, then number
AbstractNode is increased by one and the current node will
become a new group head. Formally, this is expressed as
follows.

For each s′ /∈gri, (where gri ∈ Abstract and 1 ≤ i ≤
|Abstract|):

j(s′,hd(gri)) < abstractDistance) ⇒ setAbstract (s′,
gri);

j(s′,hd(gri)) ≥ abstractDistance) ⇒ (grk = number
AbstractNode +1∧ hd(grk) = s′).

The above process then repeats with the new group grk.
The abstraction moving target search (AMTS) algorithm

is shown in Figure 3. The abstraction move list guides the
agent’s movement sequence in the abstraction maze. The
real move list guides the agent’s movement sequence in the
original (unabstracted) maze. Variable detectTarget denotes
if the agent currently detects the target and exploreLocation
denotes the nearest node location which does not belong to
any group. If the agent does not detect the target, it will move
according to the last generated real move list and complete
the moves in this list. If the target has been acquired at the
completion of moves in the real move list, withinRange is
set to false and the run ends. Otherwise, the algorithm is
repeated with the next detection of the target by the agent. If
the real move list is empty, the algorithm attempts to generate
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Figure 3: Abstraction MTS algorithm.

one, based on the last known abstraction maze position of
the agent. The agent then follows the moves in this generated
real move list.

However, if the agent detects the target, withinRange is
set to true and the target position t is checked for association
with a group. If it is, the agent will generate an abstraction
move list (with the latest target position) and real move list.
Each real move list contains a movement path up to the next
group head and the last real move list with a path up to the
target. Both abstraction and real move lists are then used
to guide the agent’s movement to acquire the target. When
agent state is the same as the target position, withinRange is
set to false so that the next search-acquisition cycle can begin.
If, on the other hand, the target position is not associated
with a group, the agent finds the nearest node with no group
and continues with exploration from this location using the
position tracking algorithm. Formally, this is expressed as
follows.

While (withinRange = TRUE):

for all grs′ , where grs′ ∈ succ
(
grs
)
, find f min(grs′ ,

grt) = j(grs′ , grt) + h(grs′ , grt);

for fmin(grs′ , grt) ⇒ AL = {grs, grs′ , . . . , grt} ∧ RL =
{s, s1, s2, . . . hd(grs′)} ⇒ repeat generating RL for next
group till sk = t, where sk ∈ grt.

Abstraction MTS does not employ heuristic values and,
therefore, does not learn. To reduce first move decision
latency, each real move list is generated after the previous one
has been traversed. This process continues until the agent
arrives at the target location. When the agent traverses a real
move list, it will ignore the target’s move. It only updates the
target’s position when it generates a new real move list. In
this way, it will be faster to search for the target with lower
memory requirements.
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5. Performance Simulation and Analysis

The simulation was conducted for 6 different maze sizes: 50×
50, 100×100, 150×150, 200×200, 250×250, and 300×300.
All algorithms had the same starting points for their agent
and target in the same maze. The starting points of agent and
target are random and the heuristic distance between their
starting points is at least half of the diagonal length of the
maze. For each maze, every algorithm was executed 100 times
and the average of the results was recorded.

5.1. Results. The results show that the degree of learning
required in the algorithm depends on the target game
application. For turn-based games like chess and weiqi,
compute-intensive learning algorithms based on heuristics
are effective propositions. However, for real-time action
games where expected responses are in seconds or millisec-
onds, compute-intensive learning approaches significantly
degrade playability. For real-time MTS gaming scenarios,
in specific, an adaptive algorithm, with minimal or no
learning but favouring faster acquisition, proves a more
viable solution.

Figure 4 shows an example of a maze used in our
experiments. The black portions represent the pathways in
the maze. In this particular maze, there are two entry/exit
points (top-left and bottom-right). White portions indicate
walls in the maze. Each maze is essentially a square n×n grid.

Since all algorithms incorporate the same position
tracking routine, the number of exploration moves is similar
for all algorithms. In position tracking routine, the agent
only needs to check the value of its neighbour. So, the other
four algorithms should have a constant time, independent of
maze size. Figure 5 shows the number of agent steps taken by
the moving target search algorithm to acquire the target. The
number of moves required for the learning process depends
on the difference between the heuristic value and the actual
value. As this value difference increases, the agent takes more
steps to update the heuristic value. Weighted MTS incurs
additional moves to find alternate path to the target. Because
of this, weighted MTS has the worst performance in a perfect
maze. Commitment MTS has the second best performance.
It can be explained by the behaviour of the target that moves
randomly. Because of that, the target will not move far away
from initial position. So, it will be better for the agent to
ignore some of target move to reduce learning process.

Each point on the graph represents an average of 100
runs of the AMTS algorithm. Although the agent and
target start at the same locations for each run, the target
moves randomly. In some of the runs, it is possible that
the target approaches the agent more closely leading to an
acquisition with less moves. The target’s movement can also
be influenced to an extent by the maze topology generated.
The maze in Figure 4, for example, has a number of linear
pathways without many junctions with the result that the
target may have a net effect of moving along one dimension
without deviation, leading it closer to the agent despite
starting further away. On the whole, therefore, the average
number of moves may drop even when the maze size
increases. This is shown in Figure 5, from 100 to 150 nodes

Figure 4: Two-dimensional maze generated by Daedalus program
[13].
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Figure 5: Target acquisition moves comparison.

as well as from 250 to 300 nodes. As the problem space
increases, however, the overall trend shown by the AMTS
algorithm is still an increasing number of moves.

Figure 6 shows the maximum time required for each
movement in the moving target search algorithm. It is known
that BMTS, WMTS, and CDMTS have O(1) computation
complexity and O(n2) memory requirements. The upper
bound for computation complexity is O(pk); where p is
the actual path length and k is number of branching in
a node (constant value) [8]. Hence, the performance of
these algorithms scales exponentially with increasing maze
size. AMTS, however, has computation complexity that
depends on the maze structure and the actual path length.
The computation complexity is also greatly reduced by
introducing abstraction maze and computing partial path
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based on neighbouring abstract group information instead
of problem space-wide heuristic arrays. This results in the
performance of AMTS being linear rather than exponential.
As shown in Figure 6, the increase rate for computation
complexity in AMTS is on average linear, and the upper
bound of memory storage in AMTS is O(n); where n is
number of states.

Since the target movement is random, there could be
instants in some runs when the target leaves the detection
range of the agent while it is executing either “abstracted”
or “real” moves. As a result, the agent switches back to
exploration with the position tracking algorithm before it
can complete the movements that lead to target acquisition.
This invariably leads to a higher overhead in decision time
per move even though the target starts off closer to the agent
in a smaller maze. However, since the target moves slower
than the agent, these “irregularities” do not occur often.
Figure 6 shows such an irregularity occurring from 200 to
250 nodes before the max time per move increases again.

6. Conclusion

This paper compared and analysed several variants of the
MTS algorithm. The main focus of performance, such as
effectiveness of learning and speed of response, has been
compared with various algorithms. Overall, abstraction MTS
has the best performance. It may have the highest exploration
move, but it has the lowest MTS move. However, there
are some weaknesses of abstraction MTS that we will be
studying.

(1) It is difficult to determine abstractDistance correctly,
especially when the agent does not know the size of

maze. AbstractDistance is the distance from one node
to its group head.

(2) As the maze size increases, it will take a longer time to
generate the movement path.

(3) Abstraction MTS may not generate optimal path
since it computes complete path in abstraction level,
not in actual maze.
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