Modified iterative-learning-control-based ramp metering strategies for freeway traffic control with iteration-dependent fctors

2.50
Hdl Handle:
http://hdl.handle.net/10547/275834
Title:
Modified iterative-learning-control-based ramp metering strategies for freeway traffic control with iteration-dependent fctors
Authors:
Hou, Zhongsheng; Yan, Jingwen; Xu, Jian-Xin; Li, Zhenjiang
Abstract:
For a freeway traffic system with strict repeatable pattern, iterative learning control (ILC) has been successfully applied to local ramp metering for a macroscopic freeway environment by formulating the original ramp metering problem as an output tracking, disturbance rejection, and error compensation problem. In this paper, we address the freeway traffic ramp-metering system under a nonstrict repeatable pattern. ILC-based ramp metering and ILC add-on to ALINEA strategies are modified to deal with the presence of iteration-dependent parameters, iteration-dependent desired trajectory, and input constraints. Theoretical analysis and extensive simulations are used to verify the effectiveness of the proposed approaches.
Affiliation:
Beijing Jiaotong University, Beijing, China
Citation:
Hou, Z., Yan, J., Xu, J.-X., Li, Z. (2012) 'Modified Iterative-Learning-Control-Based Ramp Metering Strategies for Freeway Traffic Control With Iteration-Dependent Factors', IEEE Transactions on Intelligent Transportation Systems 13 (2):606-618
Publisher:
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Journal:
IEEE Transactions on Intelligent Transportation Systems
Issue Date:
2012
URI:
http://hdl.handle.net/10547/275834
DOI:
10.1109/TITS.2011.2174229
Additional Links:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6093971
Type:
Article
Language:
en
ISSN:
1524-9050; 1558-0016
Appears in Collections:
Centre for Research in Distributed Technologies (CREDIT)

Full metadata record

DC FieldValue Language
dc.contributor.authorHou, Zhongshengen_GB
dc.contributor.authorYan, Jingwenen_GB
dc.contributor.authorXu, Jian-Xinen_GB
dc.contributor.authorLi, Zhenjiangen_GB
dc.date.accessioned2013-03-25T12:48:06Z-
dc.date.available2013-03-25T12:48:06Z-
dc.date.issued2012-
dc.identifier.citationHou, Z., Yan, J., Xu, J.-X., Li, Z. (2012) 'Modified Iterative-Learning-Control-Based Ramp Metering Strategies for Freeway Traffic Control With Iteration-Dependent Factors', IEEE Transactions on Intelligent Transportation Systems 13 (2):606-618en_GB
dc.identifier.issn1524-9050-
dc.identifier.issn1558-0016-
dc.identifier.doi10.1109/TITS.2011.2174229-
dc.identifier.urihttp://hdl.handle.net/10547/275834-
dc.description.abstractFor a freeway traffic system with strict repeatable pattern, iterative learning control (ILC) has been successfully applied to local ramp metering for a macroscopic freeway environment by formulating the original ramp metering problem as an output tracking, disturbance rejection, and error compensation problem. In this paper, we address the freeway traffic ramp-metering system under a nonstrict repeatable pattern. ILC-based ramp metering and ILC add-on to ALINEA strategies are modified to deal with the presence of iteration-dependent parameters, iteration-dependent desired trajectory, and input constraints. Theoretical analysis and extensive simulations are used to verify the effectiveness of the proposed approaches.en_GB
dc.language.isoenen
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_GB
dc.relation.urlhttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6093971en_GB
dc.rightsArchived with thanks to IEEE Transactions on Intelligent Transportation Systemsen_GB
dc.subjectequationsen_GB
dc.subjectfeedback controlen_GB
dc.subjecttraffic controlen_GB
dc.subjectALINEAen_GB
dc.subjectfreeway traffic controlen_GB
dc.subjectiteration-dependent factorsen_GB
dc.subjectiterative learning control (ILC)en_GB
dc.subjectiterative learning controlen_GB
dc.subjectramp meteringen_GB
dc.subjectsimulationsen_GB
dc.titleModified iterative-learning-control-based ramp metering strategies for freeway traffic control with iteration-dependent fctorsen
dc.typeArticleen
dc.contributor.departmentBeijing Jiaotong University, Beijing, Chinaen_GB
dc.identifier.journalIEEE Transactions on Intelligent Transportation Systemsen_GB
All Items in UOBREP are protected by copyright, with all rights reserved, unless otherwise indicated.