An investigation of the Morganroth hypothesis to establish if heart adaptation is exercise specific

5.00
Hdl Handle:
http://hdl.handle.net/10547/271398
Title:
An investigation of the Morganroth hypothesis to establish if heart adaptation is exercise specific
Authors:
Richards, Joanna C.
Abstract:
The investigation of exercise specific left ventricular (LV) adaptations to training have been predominantly cross sectional in design. The purpose of the current thesis was to investigate LV adaptations to short term (6-9 weeks) training to establish if any changes are exercise specific. A correlation study was used to investigate correlations between cardiac variables and MAXOV2(study 1). Cardiac variables were found to be the strongest predictors for absolute MAXOV2, MAXOV2BM and MAXOV2FFM in cyclists compared to the total sample or sedentary group, predicting 79% (p<0.01), 70% (p<0.01) and 77% (p<0.01) of the variance, respectively. Secondly, it was found that when MAXOV2 was scaled to body mass (BM) or fat free mass (FFM) cardiac variables predicted less of the variance than for absolute MAXOV2, for all groups. Study 2 investigated the hypothesis that there would be no evidence of LV hypertrophy when there was no increase in FFM. This was achieved by taking sedentary participants through a resistance training programme of 6 weeks duration to control for increases in skeletal muscle hypertrophy. Both resting systolic blood pressure (sBP; p = 0.01, d = 1.19) and diastolic blood pressure (dBP; p = 0.029, d = 0.88) were significantly reduced following the 6 weeks resistance training. One repetition maximum (1RM) bench press significantly increased (p = 0.00, d = -1.44) as did 1 RM parallel squat strength (p = 0.00, d = -1.86), with no associated increases in relative FFM (p = 0.45) or absolute LM (p = 0.87). There was no adaptation to LV morphology (p>0.05), however early diastolic function changed with a significant decrease in peak E wave (p = 0.00, d = 1.94). Study 3 compared differences in the time course of the initial adaptations to LV structure and function during 9 weeks of aerobic, resistance and combination exercise ii training, to establish whether LV adaptations are exercise specific. The resistance and combination groups demonstrated increases in relative wall thickness (p = 0.021, ηp2 = 0.408; p = 0.004, d = -1.06, respectively). PWd also significantly increased in the combination group (p = 0.032, ηp2 = 0.301); however there were no structural adaptations evident in the aerobic group (p > 0.05). In contrast, the aerobic group demonstrated functional adaptations with a decrease in A wave (p = 0.44, d = 0.87) as did the combination group (p = 0.002, ηp2 = 0.407). The results of the training studies showed limited support for the Morganroth Hypothesis as structural adaptations demonstrated LV remodelling of the myocardial tissue, with no increase in LV mass. Further to this, combination training appears to have an additive effect of LV adaptations of both aerobic and resistance training.
Citation:
Richards, J.C. (2012) 'An investigation of the Morganroth hypothesis to establish if heart adaptation is exercise specific'. PhD Thesis. University of Bedfordhire.
Publisher:
University of Bedfordshire
Issue Date:
Nov-2012
URI:
http://hdl.handle.net/10547/271398
Type:
Thesis or dissertation
Language:
en
Description:
A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of Philosophy
Appears in Collections:
PhD e-theses

Full metadata record

DC FieldValue Language
dc.contributor.authorRichards, Joanna C.en_GB
dc.date.accessioned2013-03-07T09:49:13Z-
dc.date.available2013-03-07T09:49:13Z-
dc.date.issued2012-11-
dc.identifier.citationRichards, J.C. (2012) 'An investigation of the Morganroth hypothesis to establish if heart adaptation is exercise specific'. PhD Thesis. University of Bedfordhire.en_GB
dc.identifier.urihttp://hdl.handle.net/10547/271398-
dc.descriptionA thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of Philosophyen_GB
dc.description.abstractThe investigation of exercise specific left ventricular (LV) adaptations to training have been predominantly cross sectional in design. The purpose of the current thesis was to investigate LV adaptations to short term (6-9 weeks) training to establish if any changes are exercise specific. A correlation study was used to investigate correlations between cardiac variables and MAXOV2(study 1). Cardiac variables were found to be the strongest predictors for absolute MAXOV2, MAXOV2BM and MAXOV2FFM in cyclists compared to the total sample or sedentary group, predicting 79% (p<0.01), 70% (p<0.01) and 77% (p<0.01) of the variance, respectively. Secondly, it was found that when MAXOV2 was scaled to body mass (BM) or fat free mass (FFM) cardiac variables predicted less of the variance than for absolute MAXOV2, for all groups. Study 2 investigated the hypothesis that there would be no evidence of LV hypertrophy when there was no increase in FFM. This was achieved by taking sedentary participants through a resistance training programme of 6 weeks duration to control for increases in skeletal muscle hypertrophy. Both resting systolic blood pressure (sBP; p = 0.01, d = 1.19) and diastolic blood pressure (dBP; p = 0.029, d = 0.88) were significantly reduced following the 6 weeks resistance training. One repetition maximum (1RM) bench press significantly increased (p = 0.00, d = -1.44) as did 1 RM parallel squat strength (p = 0.00, d = -1.86), with no associated increases in relative FFM (p = 0.45) or absolute LM (p = 0.87). There was no adaptation to LV morphology (p>0.05), however early diastolic function changed with a significant decrease in peak E wave (p = 0.00, d = 1.94). Study 3 compared differences in the time course of the initial adaptations to LV structure and function during 9 weeks of aerobic, resistance and combination exercise ii training, to establish whether LV adaptations are exercise specific. The resistance and combination groups demonstrated increases in relative wall thickness (p = 0.021, ηp2 = 0.408; p = 0.004, d = -1.06, respectively). PWd also significantly increased in the combination group (p = 0.032, ηp2 = 0.301); however there were no structural adaptations evident in the aerobic group (p > 0.05). In contrast, the aerobic group demonstrated functional adaptations with a decrease in A wave (p = 0.44, d = 0.87) as did the combination group (p = 0.002, ηp2 = 0.407). The results of the training studies showed limited support for the Morganroth Hypothesis as structural adaptations demonstrated LV remodelling of the myocardial tissue, with no increase in LV mass. Further to this, combination training appears to have an additive effect of LV adaptations of both aerobic and resistance training.en_GB
dc.language.isoenen
dc.publisherUniversity of Bedfordshireen_GB
dc.subjectC600 Sports Scienceen_GB
dc.subjectMorganroth hypothesisen_GB
dc.subjectleft ventricular (LV) adaptationsen_GB
dc.subjectexerciseen_GB
dc.titleAn investigation of the Morganroth hypothesis to establish if heart adaptation is exercise specificen
dc.typeThesis or dissertationen
dc.type.qualificationnamePhDen
dc.type.qualificationlevelDoctoralen
dc.publisher.institutionUniversity of Bedfordshireen
This item is licensed under a Creative Commons License
Creative Commons
All Items in UOBREP are protected by copyright, with all rights reserved, unless otherwise indicated.